(aig-xor x y) constructs an AIG representing
(aig-xor x y) → aig
Function:
(defun aig-xor (x y) (declare (xargs :guard t)) (let ((__function__ 'aig-xor)) (declare (ignorable __function__)) (aig-or (aig-and x (aig-not y)) (aig-and y (aig-not x)))))
Theorem:
(defthm aig-eval-xor (equal (aig-eval (aig-xor x y) env) (xor (aig-eval x env) (aig-eval y env))))