• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-with-tracking
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-marked
        • Aignet-complete-copy
        • Aignet-transforms
          • Aignet-output-ranges
          • Aignet-comb-transforms
            • Fraig
            • Parametrize
            • Observability-fix
            • Constprop
              • Aignet-constprop-sweep
              • Aignet-lit-constprop-init-and-sweep
              • Aignet-lit-constprop
                • Aignet-constprop-sweep-invar
                • Constprop-iter
                • Constprop-once
                • Constprop-core
                • Constprop!
                • Constprop-config
                • Aignet-constprop-stats
              • Apply-m-assumption-n-output-output-transform-default
              • Balance
              • Apply-n-output-comb-transform-default
              • Apply-comb-transform-default
              • Obs-constprop
              • Rewrite
              • Comb-transform
              • Abc-comb-simplify
              • Prune
              • Rewrite!
              • M-assumption-n-output-comb-transform->name
              • N-output-comb-transform->name
              • Comb-transform->name
              • N-output-comb-transformlist
              • M-assumption-n-output-comb-transformlist
              • Comb-transformlist
              • Apply-comb-transform
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Constprop

    Aignet-lit-constprop

    Signature
    (aignet-lit-constprop lit aignet gatesimp aignet2) 
      → 
    (mv new-lit new-aignet2)
    Arguments
    lit — Guard (litp lit).
    gatesimp — Guard (gatesimp-p gatesimp).
    Returns
    new-lit — Type (litp new-lit).

    Definitions and Theorems

    Function: aignet-lit-constprop

    (defun aignet-lit-constprop (lit aignet gatesimp aignet2)
      (declare (xargs :stobjs (aignet aignet2)))
      (declare (type (integer 0 *) lit))
      (declare (xargs :guard (and (litp lit) (gatesimp-p gatesimp))))
      (declare (xargs :split-types t
                      :guard (fanin-litp lit aignet)))
      (let ((__function__ 'aignet-lit-constprop))
        (declare (ignorable __function__))
        (b* (((local-stobjs copy strash)
              (mv new-lit aignet2 strash copy))
             ((mv constr-lit strash copy aignet2)
              (aignet-lit-constprop-init-and-sweep
                   lit
                   aignet gatesimp strash copy aignet2))
             ((acl2::hintcontext-bind ((sweep-aignet2 aignet2))))
             ((mv conj strash aignet2)
              (aignet-hash-and constr-lit (lit-copy (lit-abs lit) copy)
                               gatesimp strash aignet2))
             (result-lit (lit-negate-cond conj (lit->neg lit)))
             ((acl2::hintcontext :here)))
          (mv result-lit aignet2 strash copy))))

    Theorem: litp-of-aignet-lit-constprop.new-lit

    (defthm litp-of-aignet-lit-constprop.new-lit
      (b* (((mv ?new-lit ?new-aignet2)
            (aignet-lit-constprop lit aignet gatesimp aignet2)))
        (litp new-lit))
      :rule-classes :rewrite)

    Theorem: stype-count-of-aignet-lit-constprop

    (defthm stype-count-of-aignet-lit-constprop
      (b* (((mv ?new-lit ?new-aignet2)
            (aignet-lit-constprop lit aignet gatesimp aignet2)))
        (and (equal (stype-count :pi new-aignet2)
                    (stype-count :pi aignet))
             (equal (stype-count :reg new-aignet2)
                    (stype-count :reg aignet))
             (equal (stype-count :po new-aignet2) 0)
             (equal (stype-count :nxst new-aignet2)
                    0)
             (equal (stype-count :const new-aignet2)
                    0))))

    Theorem: aignet-litp-of-aignet-lit-constprop

    (defthm aignet-litp-of-aignet-lit-constprop
      (b* (((mv ?new-lit ?new-aignet2)
            (aignet-lit-constprop lit aignet gatesimp aignet2)))
        (implies (and (aignet-litp lit aignet))
                 (aignet-litp new-lit new-aignet2))))

    Theorem: aignet-lit-constprop-correct

    (defthm aignet-lit-constprop-correct
      (b* (((mv ?new-lit ?new-aignet2)
            (aignet-lit-constprop lit aignet gatesimp aignet2)))
        (implies (aignet-litp lit aignet)
                 (equal (lit-eval new-lit invals regvals new-aignet2)
                        (lit-eval lit invals regvals aignet)))))

    Theorem: normalize-inputs-of-aignet-lit-constprop

    (defthm normalize-inputs-of-aignet-lit-constprop
     (b* nil
      (implies
        (syntaxp (not (equal aignet2 ''nil)))
        (equal (aignet-lit-constprop lit aignet gatesimp aignet2)
               (let ((aignet2 nil))
                 (aignet-lit-constprop lit aignet gatesimp aignet2))))))

    Theorem: aignet-lit-constprop-of-lit-fix-lit

    (defthm aignet-lit-constprop-of-lit-fix-lit
      (equal (aignet-lit-constprop (lit-fix lit)
                                   aignet gatesimp aignet2)
             (aignet-lit-constprop lit aignet gatesimp aignet2)))

    Theorem: aignet-lit-constprop-lit-equiv-congruence-on-lit

    (defthm aignet-lit-constprop-lit-equiv-congruence-on-lit
     (implies
       (lit-equiv lit lit-equiv)
       (equal (aignet-lit-constprop lit aignet gatesimp aignet2)
              (aignet-lit-constprop lit-equiv aignet gatesimp aignet2)))
     :rule-classes :congruence)

    Theorem: aignet-lit-constprop-of-node-list-fix-aignet

    (defthm aignet-lit-constprop-of-node-list-fix-aignet
      (equal (aignet-lit-constprop lit (node-list-fix aignet)
                                   gatesimp aignet2)
             (aignet-lit-constprop lit aignet gatesimp aignet2)))

    Theorem: aignet-lit-constprop-node-list-equiv-congruence-on-aignet

    (defthm aignet-lit-constprop-node-list-equiv-congruence-on-aignet
     (implies
       (node-list-equiv aignet aignet-equiv)
       (equal (aignet-lit-constprop lit aignet gatesimp aignet2)
              (aignet-lit-constprop lit aignet-equiv gatesimp aignet2)))
     :rule-classes :congruence)

    Theorem: aignet-lit-constprop-of-gatesimp-fix-gatesimp

    (defthm aignet-lit-constprop-of-gatesimp-fix-gatesimp
      (equal (aignet-lit-constprop lit aignet (gatesimp-fix gatesimp)
                                   aignet2)
             (aignet-lit-constprop lit aignet gatesimp aignet2)))

    Theorem: aignet-lit-constprop-gatesimp-equiv-congruence-on-gatesimp

    (defthm aignet-lit-constprop-gatesimp-equiv-congruence-on-gatesimp
     (implies
       (gatesimp-equiv gatesimp gatesimp-equiv)
       (equal (aignet-lit-constprop lit aignet gatesimp aignet2)
              (aignet-lit-constprop lit aignet gatesimp-equiv aignet2)))
     :rule-classes :congruence)

    Theorem: aignet-lit-constprop-of-node-list-fix-aignet2

    (defthm aignet-lit-constprop-of-node-list-fix-aignet2
     (equal
          (aignet-lit-constprop lit
                                aignet gatesimp (node-list-fix aignet2))
          (aignet-lit-constprop lit aignet gatesimp aignet2)))

    Theorem: aignet-lit-constprop-node-list-equiv-congruence-on-aignet2

    (defthm aignet-lit-constprop-node-list-equiv-congruence-on-aignet2
     (implies
       (node-list-equiv aignet2 aignet2-equiv)
       (equal (aignet-lit-constprop lit aignet gatesimp aignet2)
              (aignet-lit-constprop lit aignet gatesimp aignet2-equiv)))
     :rule-classes :congruence)