• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-with-tracking
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-marked
        • Aignet-complete-copy
        • Aignet-transforms
          • Aignet-output-ranges
          • Aignet-comb-transforms
            • Fraig
            • Parametrize
            • Observability-fix
              • Observability-fix-hyps/concls
              • Observability-fix-input-copies
              • Observability-fixed-inputs
              • Observability-fixed-regs
                • Observability-fix-hyp/concl
                • Observability-fix-lit
                • M-assum-n-output-observability
                • Observability-fix-outs
                • Observability-fix-nxsts
                • Observability-split-supergate-aux
                • Observability-fix-core
                • Observability-split-supergate
                • Aignet-build-wide-and
                • Observability-config
                • Observability-fix!
                • Observability-size-check
                • M-assum-n-output-observability-config
              • Constprop
              • Apply-m-assumption-n-output-output-transform-default
              • Balance
              • Apply-n-output-comb-transform-default
              • Apply-comb-transform-default
              • Obs-constprop
              • Rewrite
              • Comb-transform
              • Abc-comb-simplify
              • Prune
              • Rewrite!
              • M-assumption-n-output-comb-transform->name
              • N-output-comb-transform->name
              • Comb-transform->name
              • N-output-comb-transformlist
              • M-assumption-n-output-comb-transformlist
              • Comb-transformlist
              • Apply-comb-transform
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Observability-fix

    Observability-fixed-regs

    Signature
    (observability-fixed-regs n regvals regmasks hyp-lit 
                              aignet copy gatesimp strash aignet2) 
     
      → 
    (mv new-copy new-strash new-aignet2)
    Arguments
    n — Guard (natp n).
    hyp-lit — Guard (litp hyp-lit).
    gatesimp — Guard (gatesimp-p gatesimp).

    Definitions and Theorems

    Function: observability-fixed-regs

    (defun observability-fixed-regs
           (n regvals regmasks hyp-lit
              aignet copy gatesimp strash aignet2)
     (declare
          (xargs :stobjs (regvals regmasks aignet copy strash aignet2)))
     (declare (xargs :guard (and (natp n)
                                 (litp hyp-lit)
                                 (gatesimp-p gatesimp))))
     (declare (xargs :guard (and (<= (nfix n) (num-regs aignet))
                                 (fanin-litp hyp-lit aignet2)
                                 (<= (num-regs aignet)
                                     (num-regs aignet2))
                                 (<= (num-regs aignet)
                                     (bits-length regvals))
                                 (<= (num-regs aignet)
                                     (bits-length regmasks))
                                 (aignet-copies-in-bounds copy aignet2)
                                 (<= (num-fanins aignet)
                                     (lits-length copy)))))
     (let ((__function__ 'observability-fixed-regs))
      (declare (ignorable __function__))
      (b* (((when (mbe :logic (zp (- (num-regs aignet) (nfix n)))
                       :exec (eql (num-regs aignet) n)))
            (b* ((aignet2 (aignet-fix aignet2)))
              (mv copy strash aignet2)))
           (reg-lit (get-lit (regnum->id n aignet) copy))
           ((mv fixed-lit strash aignet2)
            (if (eql 1 (get-bit n regmasks))
                (aignet-hash-mux hyp-lit reg-lit (get-bit n regvals)
                                 gatesimp strash aignet2)
              (mv reg-lit strash aignet2)))
           (orig-id (regnum->id n aignet))
           (copy (set-lit orig-id fixed-lit copy)))
       (observability-fixed-regs (1+ (lnfix n))
                                 regvals regmasks hyp-lit
                                 aignet copy gatesimp strash aignet2))))

    Theorem: copies-in-bounds-of-observability-fixed-regs

    (defthm copies-in-bounds-of-observability-fixed-regs
     (b*
      (((mv ?new-copy ?new-strash ?new-aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))
      (implies (and (aignet-copies-in-bounds copy aignet2)
                    (aignet-litp hyp-lit aignet2)
                    (<= (num-regs aignet)
                        (num-regs aignet2)))
               (aignet-copies-in-bounds new-copy new-aignet2))))

    Theorem: copy-length-of-observability-fixed-regs

    (defthm copy-length-of-observability-fixed-regs
     (b*
      (((mv ?new-copy ?new-strash ?new-aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))
      (implies (<= (num-fanins aignet) (len copy))
               (equal (len new-copy) (len copy)))))

    Theorem: aignet-extension-p-of-observability-fixed-regs

    (defthm aignet-extension-p-of-observability-fixed-regs
     (b*
      (((mv ?new-copy ?new-strash ?new-aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))
      (aignet-extension-p new-aignet2 aignet2)))

    Theorem: stypes-preserved-of-observability-fixed-regs

    (defthm stypes-preserved-of-observability-fixed-regs
     (b*
      (((mv ?new-copy ?new-strash ?new-aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))
      (implies (and (not (equal (stype-fix stype) (and-stype)))
                    (not (equal (stype-fix stype) (xor-stype))))
               (equal (stype-count stype new-aignet2)
                      (stype-count stype aignet2)))))

    Theorem: non-reg-copy-of-observability-fixed-inputs

    (defthm non-reg-copy-of-observability-fixed-inputs
     (b*
      (((mv ?new-copy ?new-strash ?new-aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))
      (implies (not (equal (stype (car (lookup-id id aignet)))
                           :reg))
               (equal (nth-lit id new-copy)
                      (nth-lit id copy)))))

    Theorem: reg-copy-of-observability-fixed-regs

    (defthm reg-copy-of-observability-fixed-regs
     (b*
      (((mv ?new-copy ?new-strash ?new-aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))
      (implies
       (and (<= (nfix n) (nfix regnum))
            (< (nfix regnum) (num-regs aignet))
            (aignet-litp hyp-lit aignet2)
            (aignet-copies-in-bounds copy aignet2)
            (<= (num-regs aignet)
                (num-regs aignet2))
            (equal 1
                   (lit-eval hyp-lit
                             some-invals some-regvals aignet2)))
       (equal
           (lit-eval
                (nth-lit (fanin-count (lookup-stype regnum :reg aignet))
                         new-copy)
                some-invals some-regvals new-aignet2)
           (lit-eval
                (nth-lit (fanin-count (lookup-stype regnum :reg aignet))
                         copy)
                some-invals some-regvals aignet2)))))

    Theorem: reg-copy-values-of-observability-fixed-regs

    (defthm reg-copy-values-of-observability-fixed-regs
     (b*
      (((mv ?new-copy ?new-strash ?new-aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))
      (implies
           (and (aignet-litp hyp-lit aignet2)
                (aignet-copies-in-bounds copy aignet2)
                (<= (num-regs aignet)
                    (num-regs aignet2))
                (equal 1
                       (lit-eval hyp-lit
                                 some-invals some-regvals aignet2)))
           (equal (reg-copy-values n some-invals some-regvals
                                   aignet new-copy new-aignet2)
                  (reg-copy-values n some-invals
                                   some-regvals aignet copy aignet2)))))

    Theorem: input-copy-values-of-observability-fixed-regs

    (defthm input-copy-values-of-observability-fixed-regs
     (b*
      (((mv ?new-copy ?new-strash ?new-aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))
      (implies
         (and (aignet-copies-in-bounds copy aignet2)
              (aignet-litp hyp-lit aignet2)
              (<= (num-regs aignet)
                  (num-regs aignet2)))
         (equal (input-copy-values 0 some-invals some-regvals
                                   aignet new-copy new-aignet2)
                (input-copy-values 0 some-invals
                                   some-regvals aignet copy aignet2)))))

    Theorem: observability-fixed-regs-of-nfix-n

    (defthm observability-fixed-regs-of-nfix-n
     (equal
        (observability-fixed-regs (nfix n)
                                  regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))

    Theorem: observability-fixed-regs-nat-equiv-congruence-on-n

    (defthm observability-fixed-regs-nat-equiv-congruence-on-n
     (implies
      (nat-equiv n n-equiv)
      (equal
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)
        (observability-fixed-regs n-equiv regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))
     :rule-classes :congruence)

    Theorem: observability-fixed-regs-of-lit-fix-hyp-lit

    (defthm observability-fixed-regs-of-lit-fix-hyp-lit
     (equal
        (observability-fixed-regs n regvals regmasks (lit-fix hyp-lit)
                                  aignet copy gatesimp strash aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))

    Theorem: observability-fixed-regs-lit-equiv-congruence-on-hyp-lit

    (defthm observability-fixed-regs-lit-equiv-congruence-on-hyp-lit
     (implies
      (lit-equiv hyp-lit hyp-lit-equiv)
      (equal
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit-equiv
                                  aignet copy gatesimp strash aignet2)))
     :rule-classes :congruence)

    Theorem: observability-fixed-regs-of-node-list-fix-aignet

    (defthm observability-fixed-regs-of-node-list-fix-aignet
     (equal
       (observability-fixed-regs n regvals
                                 regmasks hyp-lit (node-list-fix aignet)
                                 copy gatesimp strash aignet2)
       (observability-fixed-regs n regvals regmasks hyp-lit
                                 aignet copy gatesimp strash aignet2)))

    Theorem: observability-fixed-regs-node-list-equiv-congruence-on-aignet

    (defthm
          observability-fixed-regs-node-list-equiv-congruence-on-aignet
     (implies
      (node-list-equiv aignet aignet-equiv)
      (equal
       (observability-fixed-regs n regvals regmasks hyp-lit
                                 aignet copy gatesimp strash aignet2)
       (observability-fixed-regs n regvals regmasks hyp-lit aignet-equiv
                                 copy gatesimp strash aignet2)))
     :rule-classes :congruence)

    Theorem: observability-fixed-regs-of-gatesimp-fix-gatesimp

    (defthm observability-fixed-regs-of-gatesimp-fix-gatesimp
     (equal
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy (gatesimp-fix gatesimp)
                                  strash aignet2)
        (observability-fixed-regs n regvals regmasks hyp-lit
                                  aignet copy gatesimp strash aignet2)))

    Theorem: observability-fixed-regs-gatesimp-equiv-congruence-on-gatesimp

    (defthm
         observability-fixed-regs-gatesimp-equiv-congruence-on-gatesimp
     (implies
      (gatesimp-equiv gatesimp gatesimp-equiv)
      (equal
         (observability-fixed-regs n regvals regmasks hyp-lit
                                   aignet copy gatesimp strash aignet2)
         (observability-fixed-regs n regvals regmasks hyp-lit aignet
                                   copy gatesimp-equiv strash aignet2)))
     :rule-classes :congruence)

    Theorem: observability-fixed-regs-of-node-list-fix-aignet2

    (defthm observability-fixed-regs-of-node-list-fix-aignet2
     (equal
      (observability-fixed-regs n regvals regmasks hyp-lit aignet copy
                                gatesimp strash (node-list-fix aignet2))
      (observability-fixed-regs n regvals regmasks hyp-lit
                                aignet copy gatesimp strash aignet2)))

    Theorem: observability-fixed-regs-node-list-equiv-congruence-on-aignet2

    (defthm
         observability-fixed-regs-node-list-equiv-congruence-on-aignet2
     (implies
      (node-list-equiv aignet2 aignet2-equiv)
      (equal
         (observability-fixed-regs n regvals regmasks hyp-lit
                                   aignet copy gatesimp strash aignet2)
         (observability-fixed-regs n regvals regmasks hyp-lit aignet
                                   copy gatesimp strash aignet2-equiv)))
     :rule-classes :congruence)