Fixing function for simpadd0-gin structures.
(simpadd0-gin-fix x) → new-x
Function:
(defun simpadd0-gin-fix$inline (x) (declare (xargs :guard (simpadd0-ginp x))) (let ((__function__ 'simpadd0-gin-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((thm-index (acl2::pos-fix (cdr (std::da-nth 0 x)))) (names-to-avoid (acl2::symbol-list-fix (cdr (std::da-nth 1 x))))) (list (cons 'thm-index thm-index) (cons 'names-to-avoid names-to-avoid))) :exec x)))
Theorem:
(defthm simpadd0-ginp-of-simpadd0-gin-fix (b* ((new-x (simpadd0-gin-fix$inline x))) (simpadd0-ginp new-x)) :rule-classes :rewrite)
Theorem:
(defthm simpadd0-gin-fix-when-simpadd0-ginp (implies (simpadd0-ginp x) (equal (simpadd0-gin-fix x) x)))
Function:
(defun simpadd0-gin-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (simpadd0-ginp acl2::x) (simpadd0-ginp acl2::y)))) (equal (simpadd0-gin-fix acl2::x) (simpadd0-gin-fix acl2::y)))
Theorem:
(defthm simpadd0-gin-equiv-is-an-equivalence (and (booleanp (simpadd0-gin-equiv x y)) (simpadd0-gin-equiv x x) (implies (simpadd0-gin-equiv x y) (simpadd0-gin-equiv y x)) (implies (and (simpadd0-gin-equiv x y) (simpadd0-gin-equiv y z)) (simpadd0-gin-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm simpadd0-gin-equiv-implies-equal-simpadd0-gin-fix-1 (implies (simpadd0-gin-equiv acl2::x x-equiv) (equal (simpadd0-gin-fix acl2::x) (simpadd0-gin-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm simpadd0-gin-fix-under-simpadd0-gin-equiv (simpadd0-gin-equiv (simpadd0-gin-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-simpadd0-gin-fix-1-forward-to-simpadd0-gin-equiv (implies (equal (simpadd0-gin-fix acl2::x) acl2::y) (simpadd0-gin-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-simpadd0-gin-fix-2-forward-to-simpadd0-gin-equiv (implies (equal acl2::x (simpadd0-gin-fix acl2::y)) (simpadd0-gin-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm simpadd0-gin-equiv-of-simpadd0-gin-fix-1-forward (implies (simpadd0-gin-equiv (simpadd0-gin-fix acl2::x) acl2::y) (simpadd0-gin-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm simpadd0-gin-equiv-of-simpadd0-gin-fix-2-forward (implies (simpadd0-gin-equiv acl2::x (simpadd0-gin-fix acl2::y)) (simpadd0-gin-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)