Equality of a value of type
Function:
(defun eq-uchar-sllong (x y) (declare (xargs :guard (and (ucharp x) (sllongp y)))) (eq-sllong-sllong (sllong-from-uchar x) y))
Theorem:
(defthm sintp-of-eq-uchar-sllong (sintp (eq-uchar-sllong x y)))
Theorem:
(defthm eq-uchar-sllong-of-uchar-fix-x (equal (eq-uchar-sllong (uchar-fix x) y) (eq-uchar-sllong x y)))
Theorem:
(defthm eq-uchar-sllong-uchar-equiv-congruence-on-x (implies (uchar-equiv x x-equiv) (equal (eq-uchar-sllong x y) (eq-uchar-sllong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm eq-uchar-sllong-of-sllong-fix-y (equal (eq-uchar-sllong x (sllong-fix y)) (eq-uchar-sllong x y)))
Theorem:
(defthm eq-uchar-sllong-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (eq-uchar-sllong x y) (eq-uchar-sllong x y-equiv))) :rule-classes :congruence)