Equality of a value of type
Function:
(defun eq-sllong-sllong (x y) (declare (xargs :guard (and (sllongp x) (sllongp y)))) (if (= (integer-from-sllong x) (integer-from-sllong y)) (sint-from-integer 1) (sint-from-integer 0)))
Theorem:
(defthm sintp-of-eq-sllong-sllong (sintp (eq-sllong-sllong x y)))
Theorem:
(defthm eq-sllong-sllong-of-sllong-fix-x (equal (eq-sllong-sllong (sllong-fix x) y) (eq-sllong-sllong x y)))
Theorem:
(defthm eq-sllong-sllong-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (eq-sllong-sllong x y) (eq-sllong-sllong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm eq-sllong-sllong-of-sllong-fix-y (equal (eq-sllong-sllong x (sllong-fix y)) (eq-sllong-sllong x y)))
Theorem:
(defthm eq-sllong-sllong-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (eq-sllong-sllong x y) (eq-sllong-sllong x y-equiv))) :rule-classes :congruence)