Evaluation semantics of binary-*.
Function:
(defun eval-binary-* (x y) (declare (xargs :guard (and (valuep x) (valuep y)))) (let ((__function__ 'eval-binary-*)) (declare (ignorable __function__)) (value-number (if (value-case x :number) (if (value-case y :number) (binary-* (value-number->get x) (value-number->get y)) 0) 0))))
Theorem:
(defthm valuep-of-eval-binary-* (b* ((result (eval-binary-* x y))) (valuep result)) :rule-classes :rewrite)
Theorem:
(defthm eval-binary-*-of-value-fix-x (equal (eval-binary-* (value-fix x) y) (eval-binary-* x y)))
Theorem:
(defthm eval-binary-*-value-equiv-congruence-on-x (implies (value-equiv x x-equiv) (equal (eval-binary-* x y) (eval-binary-* x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm eval-binary-*-of-value-fix-y (equal (eval-binary-* x (value-fix y)) (eval-binary-* x y)))
Theorem:
(defthm eval-binary-*-value-equiv-congruence-on-y (implies (value-equiv y y-equiv) (equal (eval-binary-* x y) (eval-binary-* x y-equiv))) :rule-classes :congruence)