Evaluation semantics of complex-rationalp.
Function:
(defun eval-complex-rationalp (x) (declare (xargs :guard (valuep x))) (let ((__function__ 'eval-complex-rationalp)) (declare (ignorable __function__)) (lift-value (and (value-case x :number) (complex-rationalp (value-number->get x))))))
Theorem:
(defthm valuep-of-eval-complex-rationalp (b* ((result (eval-complex-rationalp x))) (valuep result)) :rule-classes :rewrite)
Theorem:
(defthm eval-complex-rationalp-of-value-fix-x (equal (eval-complex-rationalp (value-fix x)) (eval-complex-rationalp x)))
Theorem:
(defthm eval-complex-rationalp-value-equiv-congruence-on-x (implies (value-equiv x x-equiv) (equal (eval-complex-rationalp x) (eval-complex-rationalp x-equiv))) :rule-classes :congruence)