Evaluation semantics of unary-/.
Function:
(defun eval-unary-/ (x) (declare (xargs :guard (valuep x))) (let ((__function__ 'eval-unary-/)) (declare (ignorable __function__)) (value-number (if (value-case x :number) (b* ((x-number (value-number->get x))) (if (/= x-number 0) (unary-/ x-number) 0)) 0))))
Theorem:
(defthm valuep-of-eval-unary-/ (b* ((result (eval-unary-/ x))) (valuep result)) :rule-classes :rewrite)
Theorem:
(defthm eval-unary-/-of-value-fix-x (equal (eval-unary-/ (value-fix x)) (eval-unary-/ x)))
Theorem:
(defthm eval-unary-/-value-equiv-congruence-on-x (implies (value-equiv x x-equiv) (equal (eval-unary-/ x) (eval-unary-/ x-equiv))) :rule-classes :congruence)