Search-engine friendly clone of the
ACL2 documentation
.
Top
Documentation
Books
Boolean-reasoning
Projects
Debugging
Std
Proof-automation
Macro-libraries
ACL2
Theories
Rule-classes
Proof-builder
Recursion-and-induction
Hons-and-memoization
Events
Parallelism
History
Programming
Operational-semantics
Real
Start-here
Debugging
Miscellaneous
Term
Ld
Hints
Type-set
Ordinals
O-p
O<
Proof-of-well-foundedness
Two-nats-measure
Nat-list-measure
Make-ord
O-first-coeff
E0-ord-<
O-first-expt
E0-ordinalp
O-rst
O-finp
O>=
O<=
O-infp
O>
Clause
ACL2-customization
With-prover-step-limit
Set-prover-step-limit
With-prover-time-limit
Local-incompatibility
Set-case-split-limitations
Subversive-recursions
Specious-simplification
Defsum
Gcl
Oracle-timelimit
Thm
Defopener
Case-split-limitations
Set-gc-strategy
Default-defun-mode
Top-level
Reader
Ttags-seen
Adviser
Ttree
Abort-soft
Defsums
Gc$
With-timeout
Coi-debug::fail
Expander
Gc-strategy
Coi-debug::assert
Sin-cos
Def::doc
Syntax
Subversive-inductions
Output-controls
Macros
Interfacing-tools
Interfacing-tools
Hardware-verification
Software-verification
Math
Testing-utilities
Ordinals
ACL2-built-ins
O-infp
Recognizes if an ordinal is infinite
O-infp
is a macro.
(
O-infp
x)
opens up to
(
not
(
o-finp
x))
.