(pseudo-fnsym-fix x) → new-x
Function:
(defun pseudo-fnsym-fix (x) (declare (xargs :guard (pseudo-fnsym-p x))) (let ((__function__ 'pseudo-fnsym-fix)) (declare (ignorable __function__)) (mbe :logic (and (pseudo-fnsym-p x) x) :exec x)))
Theorem:
(defthm pseudo-fnsym-p-of-pseudo-fnsym-fix (b* ((new-x (pseudo-fnsym-fix x))) (pseudo-fnsym-p new-x)) :rule-classes (:rewrite (:type-prescription :typed-term (pseudo-fnsym-fix x))))
Theorem:
(defthm pseudo-fnsym-fix-when-pseudo-fnsym-p (implies (pseudo-fnsym-p x) (equal (pseudo-fnsym-fix x) x)))
Function:
(defun pseudo-fnsym-equiv$inline (x y) (declare (xargs :guard (and (pseudo-fnsym-p x) (pseudo-fnsym-p y)))) (equal (pseudo-fnsym-fix x) (pseudo-fnsym-fix y)))
Theorem:
(defthm pseudo-fnsym-equiv-is-an-equivalence (and (booleanp (pseudo-fnsym-equiv x y)) (pseudo-fnsym-equiv x x) (implies (pseudo-fnsym-equiv x y) (pseudo-fnsym-equiv y x)) (implies (and (pseudo-fnsym-equiv x y) (pseudo-fnsym-equiv y z)) (pseudo-fnsym-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm pseudo-fnsym-equiv-implies-equal-pseudo-fnsym-fix-1 (implies (pseudo-fnsym-equiv x x-equiv) (equal (pseudo-fnsym-fix x) (pseudo-fnsym-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm pseudo-fnsym-fix-under-pseudo-fnsym-equiv (pseudo-fnsym-equiv (pseudo-fnsym-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm not-quote-of-pseudo-fnsym-fix (not (equal (pseudo-fnsym-fix x) 'quote)))
Theorem:
(defthm pseudo-fnsym-fix-of-pseudo-fnsym-fix-x (equal (pseudo-fnsym-fix (pseudo-fnsym-fix x)) (pseudo-fnsym-fix x)))
Theorem:
(defthm pseudo-fnsym-fix-pseudo-fnsym-equiv-congruence-on-x (implies (pseudo-fnsym-equiv x x-equiv) (equal (pseudo-fnsym-fix x) (pseudo-fnsym-fix x-equiv))) :rule-classes :congruence)