(stv2c-c-symbol-names x) maps stv2c-c-symbol-name across a list.
(stv2c-c-symbol-names x) → *
This is an ordinary std::defprojection.
Function:
(defun stv2c-c-symbol-names-exec (x acc) (declare (xargs :guard t)) (let ((__function__ 'stv2c-c-symbol-names-exec)) (declare (ignorable __function__)) (if (consp x) (stv2c-c-symbol-names-exec (cdr x) (cons (stv2c-c-symbol-name (car x)) acc)) acc)))
Function:
(defun stv2c-c-symbol-names-nrev (x nrev) (declare (xargs :stobjs (nrev))) (declare (xargs :guard t)) (let ((__function__ 'stv2c-c-symbol-names-nrev)) (declare (ignorable __function__)) (if (atom x) (nrev-fix nrev) (let ((nrev (nrev-push (stv2c-c-symbol-name (car x)) nrev))) (stv2c-c-symbol-names-nrev (cdr x) nrev)))))
Function:
(defun stv2c-c-symbol-names (x) (declare (xargs :guard t)) (let ((__function__ 'stv2c-c-symbol-names)) (declare (ignorable __function__)) (mbe :logic (if (consp x) (cons (stv2c-c-symbol-name (car x)) (stv2c-c-symbol-names (cdr x))) nil) :exec (if (atom x) nil (with-local-nrev (stv2c-c-symbol-names-nrev x nrev))))))
Theorem:
(defthm stv2c-c-symbol-names-nrev-removal (equal (stv2c-c-symbol-names-nrev x nrev) (append nrev (stv2c-c-symbol-names x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stv2c-c-symbol-names-exec-removal (equal (stv2c-c-symbol-names-exec x acc) (revappend (stv2c-c-symbol-names x) acc)) :rule-classes ((:rewrite)))
Theorem:
(defthm stv2c-c-symbol-names-of-take (implies (<= (nfix n) (len x)) (equal (stv2c-c-symbol-names (take n x)) (take n (stv2c-c-symbol-names x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm set-equiv-congruence-over-stv2c-c-symbol-names (implies (set-equiv x y) (set-equiv (stv2c-c-symbol-names x) (stv2c-c-symbol-names y))) :rule-classes ((:congruence)))
Theorem:
(defthm subsetp-of-stv2c-c-symbol-names-when-subsetp (implies (subsetp x y) (subsetp (stv2c-c-symbol-names x) (stv2c-c-symbol-names y))) :rule-classes ((:rewrite)))
Theorem:
(defthm member-of-stv2c-c-symbol-name-in-stv2c-c-symbol-names (implies (member k x) (member (stv2c-c-symbol-name k) (stv2c-c-symbol-names x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stv2c-c-symbol-names-of-rev (equal (stv2c-c-symbol-names (rev x)) (rev (stv2c-c-symbol-names x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stv2c-c-symbol-names-of-list-fix (equal (stv2c-c-symbol-names (list-fix x)) (stv2c-c-symbol-names x)) :rule-classes ((:rewrite)))
Theorem:
(defthm stv2c-c-symbol-names-of-append (equal (stv2c-c-symbol-names (append a b)) (append (stv2c-c-symbol-names a) (stv2c-c-symbol-names b))) :rule-classes ((:rewrite)))
Theorem:
(defthm cdr-of-stv2c-c-symbol-names (equal (cdr (stv2c-c-symbol-names x)) (stv2c-c-symbol-names (cdr x))) :rule-classes ((:rewrite)))
Theorem:
(defthm car-of-stv2c-c-symbol-names (equal (car (stv2c-c-symbol-names x)) (and (consp x) (stv2c-c-symbol-name (car x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm stv2c-c-symbol-names-under-iff (iff (stv2c-c-symbol-names x) (consp x)) :rule-classes ((:rewrite)))
Theorem:
(defthm consp-of-stv2c-c-symbol-names (equal (consp (stv2c-c-symbol-names x)) (consp x)) :rule-classes ((:rewrite)))
Theorem:
(defthm len-of-stv2c-c-symbol-names (equal (len (stv2c-c-symbol-names x)) (len x)) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-of-stv2c-c-symbol-names (true-listp (stv2c-c-symbol-names x)) :rule-classes :type-prescription)
Theorem:
(defthm stv2c-c-symbol-names-when-not-consp (implies (not (consp x)) (equal (stv2c-c-symbol-names x) nil)) :rule-classes ((:rewrite)))
Theorem:
(defthm stv2c-c-symbol-names-of-cons (equal (stv2c-c-symbol-names (cons a b)) (cons (stv2c-c-symbol-name a) (stv2c-c-symbol-names b))) :rule-classes ((:rewrite)))
Theorem:
(defthm string-listp-of-stv2c-c-symbol-names (string-listp (stv2c-c-symbol-names x)))