Basic equivalence relation for matchstatelist structures.
Function:
(defun matchstatelist-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (matchstatelist-p acl2::x) (matchstatelist-p acl2::y)))) (equal (matchstatelist-fix acl2::x) (matchstatelist-fix acl2::y)))
Theorem:
(defthm matchstatelist-equiv-is-an-equivalence (and (booleanp (matchstatelist-equiv x y)) (matchstatelist-equiv x x) (implies (matchstatelist-equiv x y) (matchstatelist-equiv y x)) (implies (and (matchstatelist-equiv x y) (matchstatelist-equiv y z)) (matchstatelist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm matchstatelist-equiv-implies-equal-matchstatelist-fix-1 (implies (matchstatelist-equiv acl2::x x-equiv) (equal (matchstatelist-fix acl2::x) (matchstatelist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm matchstatelist-fix-under-matchstatelist-equiv (matchstatelist-equiv (matchstatelist-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-matchstatelist-fix-1-forward-to-matchstatelist-equiv (implies (equal (matchstatelist-fix acl2::x) acl2::y) (matchstatelist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-matchstatelist-fix-2-forward-to-matchstatelist-equiv (implies (equal acl2::x (matchstatelist-fix acl2::y)) (matchstatelist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm matchstatelist-equiv-of-matchstatelist-fix-1-forward (implies (matchstatelist-equiv (matchstatelist-fix acl2::x) acl2::y) (matchstatelist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm matchstatelist-equiv-of-matchstatelist-fix-2-forward (implies (matchstatelist-equiv acl2::x (matchstatelist-fix acl2::y)) (matchstatelist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)