Fixing function for abc-comb-simp-config structures.
(abc-comb-simp-config-fix x) → new-x
Function:
(defun abc-comb-simp-config-fix$inline (x) (declare (xargs :guard (abc-comb-simp-config-p x))) (let ((__function__ 'abc-comb-simp-config-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((script (acl2::str-fix (cdr (std::da-nth 0 (cdr x))))) (quiet (acl2::bool-fix (cdr (std::da-nth 1 (cdr x)))))) (cons :abc-comb-simp-config (list (cons 'script script) (cons 'quiet quiet)))) :exec x)))
Theorem:
(defthm abc-comb-simp-config-p-of-abc-comb-simp-config-fix (b* ((new-x (abc-comb-simp-config-fix$inline x))) (abc-comb-simp-config-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm abc-comb-simp-config-fix-when-abc-comb-simp-config-p (implies (abc-comb-simp-config-p x) (equal (abc-comb-simp-config-fix x) x)))
Function:
(defun abc-comb-simp-config-equiv$inline (x acl2::y) (declare (xargs :guard (and (abc-comb-simp-config-p x) (abc-comb-simp-config-p acl2::y)))) (equal (abc-comb-simp-config-fix x) (abc-comb-simp-config-fix acl2::y)))
Theorem:
(defthm abc-comb-simp-config-equiv-is-an-equivalence (and (booleanp (abc-comb-simp-config-equiv x y)) (abc-comb-simp-config-equiv x x) (implies (abc-comb-simp-config-equiv x y) (abc-comb-simp-config-equiv y x)) (implies (and (abc-comb-simp-config-equiv x y) (abc-comb-simp-config-equiv y z)) (abc-comb-simp-config-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm abc-comb-simp-config-equiv-implies-equal-abc-comb-simp-config-fix-1 (implies (abc-comb-simp-config-equiv x x-equiv) (equal (abc-comb-simp-config-fix x) (abc-comb-simp-config-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm abc-comb-simp-config-fix-under-abc-comb-simp-config-equiv (abc-comb-simp-config-equiv (abc-comb-simp-config-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-abc-comb-simp-config-fix-1-forward-to-abc-comb-simp-config-equiv (implies (equal (abc-comb-simp-config-fix x) acl2::y) (abc-comb-simp-config-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-abc-comb-simp-config-fix-2-forward-to-abc-comb-simp-config-equiv (implies (equal x (abc-comb-simp-config-fix acl2::y)) (abc-comb-simp-config-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm abc-comb-simp-config-equiv-of-abc-comb-simp-config-fix-1-forward (implies (abc-comb-simp-config-equiv (abc-comb-simp-config-fix x) acl2::y) (abc-comb-simp-config-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm abc-comb-simp-config-equiv-of-abc-comb-simp-config-fix-2-forward (implies (abc-comb-simp-config-equiv x (abc-comb-simp-config-fix acl2::y)) (abc-comb-simp-config-equiv x acl2::y)) :rule-classes :forward-chaining)