(aignet-norm-p x) → *
Function:
(defun aignet-norm-p (x) (declare (xargs :guard t)) (let ((__function__ 'aignet-norm-p)) (declare (ignorable __function__)) (equal (ec-call (aignet-norm x)) x)))
Theorem:
(defthm aignet-norm-p-of-aignet-norm (aignet-norm-p (aignet-norm x)))
Theorem:
(defthm aignet-norm-when-aignet-norm-p (implies (aignet-norm-p x) (equal (aignet-norm x) x)))
Function:
(defun aignet-equiv$inline (x acl2::y) (declare (xargs :guard (and (aignet-norm-p x) (aignet-norm-p acl2::y)))) (equal (aignet-norm x) (aignet-norm acl2::y)))
Theorem:
(defthm aignet-equiv-is-an-equivalence (and (booleanp (aignet-equiv x y)) (aignet-equiv x x) (implies (aignet-equiv x y) (aignet-equiv y x)) (implies (and (aignet-equiv x y) (aignet-equiv y z)) (aignet-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm aignet-equiv-implies-equal-aignet-norm-1 (implies (aignet-equiv x x-equiv) (equal (aignet-norm x) (aignet-norm x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm aignet-norm-under-aignet-equiv (aignet-equiv (aignet-norm x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-aignet-norm-1-forward-to-aignet-equiv (implies (equal (aignet-norm x) acl2::y) (aignet-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-aignet-norm-2-forward-to-aignet-equiv (implies (equal x (aignet-norm acl2::y)) (aignet-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm aignet-equiv-of-aignet-norm-1-forward (implies (aignet-equiv (aignet-norm x) acl2::y) (aignet-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm aignet-equiv-of-aignet-norm-2-forward (implies (aignet-equiv x (aignet-norm acl2::y)) (aignet-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm node-list-equiv-refines-aignet-equiv (implies (node-list-equiv x y) (aignet-equiv x y)) :rule-classes (:refinement))