(aignet-output-range-map-fix x) is an ACL2::fty alist fixing function that follows the fix-keys strategy.
(aignet-output-range-map-fix x) → fty::newx
Note that in the execution this is just an inline identity function.
Function:
(defun aignet-output-range-map-fix$inline (x) (declare (xargs :guard (aignet-output-range-map-p x))) (let ((__function__ 'aignet-output-range-map-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) nil (if (consp (car x)) (cons (cons (acl2::symbol-fix (caar x)) (nfix (cdar x))) (aignet-output-range-map-fix (cdr x))) (aignet-output-range-map-fix (cdr x)))) :exec x)))
Theorem:
(defthm aignet-output-range-map-p-of-aignet-output-range-map-fix (b* ((fty::newx (aignet-output-range-map-fix$inline x))) (aignet-output-range-map-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm aignet-output-range-map-fix-when-aignet-output-range-map-p (implies (aignet-output-range-map-p x) (equal (aignet-output-range-map-fix x) x)))
Function:
(defun aignet-output-range-map-equiv$inline (x acl2::y) (declare (xargs :guard (and (aignet-output-range-map-p x) (aignet-output-range-map-p acl2::y)))) (equal (aignet-output-range-map-fix x) (aignet-output-range-map-fix acl2::y)))
Theorem:
(defthm aignet-output-range-map-equiv-is-an-equivalence (and (booleanp (aignet-output-range-map-equiv x y)) (aignet-output-range-map-equiv x x) (implies (aignet-output-range-map-equiv x y) (aignet-output-range-map-equiv y x)) (implies (and (aignet-output-range-map-equiv x y) (aignet-output-range-map-equiv y z)) (aignet-output-range-map-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm aignet-output-range-map-equiv-implies-equal-aignet-output-range-map-fix-1 (implies (aignet-output-range-map-equiv x x-equiv) (equal (aignet-output-range-map-fix x) (aignet-output-range-map-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm aignet-output-range-map-fix-under-aignet-output-range-map-equiv (aignet-output-range-map-equiv (aignet-output-range-map-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-aignet-output-range-map-fix-1-forward-to-aignet-output-range-map-equiv (implies (equal (aignet-output-range-map-fix x) acl2::y) (aignet-output-range-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-aignet-output-range-map-fix-2-forward-to-aignet-output-range-map-equiv (implies (equal x (aignet-output-range-map-fix acl2::y)) (aignet-output-range-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm aignet-output-range-map-equiv-of-aignet-output-range-map-fix-1-forward (implies (aignet-output-range-map-equiv (aignet-output-range-map-fix x) acl2::y) (aignet-output-range-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm aignet-output-range-map-equiv-of-aignet-output-range-map-fix-2-forward (implies (aignet-output-range-map-equiv x (aignet-output-range-map-fix acl2::y)) (aignet-output-range-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-symbol-fix-k-under-aignet-output-range-map-equiv (aignet-output-range-map-equiv (cons (cons (acl2::symbol-fix acl2::k) acl2::v) x) (cons (cons acl2::k acl2::v) x)))
Theorem:
(defthm cons-symbol-equiv-congruence-on-k-under-aignet-output-range-map-equiv (implies (acl2::symbol-equiv acl2::k k-equiv) (aignet-output-range-map-equiv (cons (cons acl2::k acl2::v) x) (cons (cons k-equiv acl2::v) x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-nfix-v-under-aignet-output-range-map-equiv (aignet-output-range-map-equiv (cons (cons acl2::k (nfix acl2::v)) x) (cons (cons acl2::k acl2::v) x)))
Theorem:
(defthm cons-nat-equiv-congruence-on-v-under-aignet-output-range-map-equiv (implies (nat-equiv acl2::v v-equiv) (aignet-output-range-map-equiv (cons (cons acl2::k acl2::v) x) (cons (cons acl2::k v-equiv) x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-aignet-output-range-map-fix-y-under-aignet-output-range-map-equiv (aignet-output-range-map-equiv (cons x (aignet-output-range-map-fix acl2::y)) (cons x acl2::y)))
Theorem:
(defthm cons-aignet-output-range-map-equiv-congruence-on-y-under-aignet-output-range-map-equiv (implies (aignet-output-range-map-equiv acl2::y y-equiv) (aignet-output-range-map-equiv (cons x acl2::y) (cons x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm aignet-output-range-map-fix-of-acons (equal (aignet-output-range-map-fix (cons (cons acl2::a acl2::b) x)) (cons (cons (acl2::symbol-fix acl2::a) (nfix acl2::b)) (aignet-output-range-map-fix x))))
Theorem:
(defthm aignet-output-range-map-fix-of-append (equal (aignet-output-range-map-fix (append std::a std::b)) (append (aignet-output-range-map-fix std::a) (aignet-output-range-map-fix std::b))))
Theorem:
(defthm consp-car-of-aignet-output-range-map-fix (equal (consp (car (aignet-output-range-map-fix x))) (consp (aignet-output-range-map-fix x))))