(bits->bools x) → bools
Function:
(defun bits->bools (x) (declare (xargs :guard (bit-listp x))) (let ((__function__ 'bits->bools)) (declare (ignorable __function__)) (if (atom x) nil (cons (bit->bool (car x)) (bits->bools (cdr x))))))
Theorem:
(defthm boolean-listp-of-bits->bools (b* ((bools (bits->bools x))) (boolean-listp bools)) :rule-classes :rewrite)
Theorem:
(defthm bits->bools-of-bit-list-fix-x (equal (bits->bools (bit-list-fix x)) (bits->bools x)))
Theorem:
(defthm bits->bools-bit-list-equiv-congruence-on-x (implies (bit-list-equiv x x-equiv) (equal (bits->bools x) (bits->bools x-equiv))) :rule-classes :congruence)