Recognizer for ubdd-to-aignet-memo.
(ubdd-to-aignet-memo-p x) → *
Function:
(defun ubdd-to-aignet-memo-p (x) (declare (xargs :guard t)) (let ((__function__ 'ubdd-to-aignet-memo-p)) (declare (ignorable __function__)) (if (atom x) (eq x nil) (and (consp (car x)) (ubdd/level-p (caar x)) (litp (cdar x)) (ubdd-to-aignet-memo-p (cdr x))))))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-revappend (equal (ubdd-to-aignet-memo-p (revappend x acl2::y)) (and (ubdd-to-aignet-memo-p (acl2::list-fix x)) (ubdd-to-aignet-memo-p acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-remove (implies (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p (remove acl2::a x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-last (implies (ubdd-to-aignet-memo-p (double-rewrite x)) (ubdd-to-aignet-memo-p (last x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-nthcdr (implies (ubdd-to-aignet-memo-p (double-rewrite x)) (ubdd-to-aignet-memo-p (nthcdr acl2::n x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-butlast (implies (ubdd-to-aignet-memo-p (double-rewrite x)) (ubdd-to-aignet-memo-p (butlast x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-update-nth (implies (ubdd-to-aignet-memo-p (double-rewrite x)) (iff (ubdd-to-aignet-memo-p (update-nth acl2::n acl2::y x)) (and (and (consp acl2::y) (ubdd/level-p (car acl2::y)) (litp (cdr acl2::y))) (or (<= (nfix acl2::n) (len x)) (and (consp nil) (ubdd/level-p (car nil)) (litp (cdr nil))))))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-repeat (iff (ubdd-to-aignet-memo-p (acl2::repeat acl2::n x)) (or (and (consp x) (ubdd/level-p (car x)) (litp (cdr x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-take (implies (ubdd-to-aignet-memo-p (double-rewrite x)) (iff (ubdd-to-aignet-memo-p (take acl2::n x)) (or (and (consp nil) (ubdd/level-p (car nil)) (litp (cdr nil))) (<= (nfix acl2::n) (len x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-union-equal (equal (ubdd-to-aignet-memo-p (union-equal x acl2::y)) (and (ubdd-to-aignet-memo-p (acl2::list-fix x)) (ubdd-to-aignet-memo-p (double-rewrite acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-intersection-equal-2 (implies (ubdd-to-aignet-memo-p (double-rewrite acl2::y)) (ubdd-to-aignet-memo-p (intersection-equal x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-intersection-equal-1 (implies (ubdd-to-aignet-memo-p (double-rewrite x)) (ubdd-to-aignet-memo-p (intersection-equal x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-set-difference-equal (implies (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p (set-difference-equal x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-when-subsetp-equal (and (implies (and (subsetp-equal x acl2::y) (ubdd-to-aignet-memo-p acl2::y)) (equal (ubdd-to-aignet-memo-p x) (true-listp x))) (implies (and (ubdd-to-aignet-memo-p acl2::y) (subsetp-equal x acl2::y)) (equal (ubdd-to-aignet-memo-p x) (true-listp x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-rcons (iff (ubdd-to-aignet-memo-p (acl2::rcons acl2::a x)) (and (and (consp acl2::a) (ubdd/level-p (car acl2::a)) (litp (cdr acl2::a))) (ubdd-to-aignet-memo-p (acl2::list-fix x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-append (equal (ubdd-to-aignet-memo-p (append acl2::a acl2::b)) (and (ubdd-to-aignet-memo-p (acl2::list-fix acl2::a)) (ubdd-to-aignet-memo-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-rev (equal (ubdd-to-aignet-memo-p (acl2::rev x)) (ubdd-to-aignet-memo-p (acl2::list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-duplicated-members (implies (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p (acl2::duplicated-members x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-difference (implies (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p (set::difference x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-intersect-2 (implies (ubdd-to-aignet-memo-p acl2::y) (ubdd-to-aignet-memo-p (set::intersect x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-intersect-1 (implies (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p (set::intersect x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-union (iff (ubdd-to-aignet-memo-p (set::union x acl2::y)) (and (ubdd-to-aignet-memo-p (set::sfix x)) (ubdd-to-aignet-memo-p (set::sfix acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-mergesort (iff (ubdd-to-aignet-memo-p (set::mergesort x)) (ubdd-to-aignet-memo-p (acl2::list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-delete (implies (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p (set::delete acl2::k x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-insert (iff (ubdd-to-aignet-memo-p (set::insert acl2::a x)) (and (ubdd-to-aignet-memo-p (set::sfix x)) (and (consp acl2::a) (ubdd/level-p (car acl2::a)) (litp (cdr acl2::a))))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-sfix (iff (ubdd-to-aignet-memo-p (set::sfix x)) (or (ubdd-to-aignet-memo-p x) (not (set::setp x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-list-fix (implies (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p (acl2::list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-ubdd-to-aignet-memo-p-compound-recognizer (implies (ubdd-to-aignet-memo-p x) (true-listp x)) :rule-classes :compound-recognizer)
Theorem:
(defthm ubdd-to-aignet-memo-p-when-not-consp (implies (not (consp x)) (equal (ubdd-to-aignet-memo-p x) (not x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-cdr-when-ubdd-to-aignet-memo-p (implies (ubdd-to-aignet-memo-p (double-rewrite x)) (ubdd-to-aignet-memo-p (cdr x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-cons (equal (ubdd-to-aignet-memo-p (cons acl2::a x)) (and (and (consp acl2::a) (ubdd/level-p (car acl2::a)) (litp (cdr acl2::a))) (ubdd-to-aignet-memo-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-remove-assoc (implies (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p (remove-assoc-equal acl2::name x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-put-assoc (implies (and (ubdd-to-aignet-memo-p x)) (iff (ubdd-to-aignet-memo-p (put-assoc-equal acl2::name acl2::val x)) (and (ubdd/level-p acl2::name) (litp acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-fast-alist-clean (implies (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p (fast-alist-clean x))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-hons-shrink-alist (implies (and (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p acl2::y)) (ubdd-to-aignet-memo-p (hons-shrink-alist x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd-to-aignet-memo-p-of-hons-acons (equal (ubdd-to-aignet-memo-p (hons-acons acl2::a acl2::n x)) (and (ubdd/level-p acl2::a) (litp acl2::n) (ubdd-to-aignet-memo-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm litp-of-cdr-of-hons-assoc-equal-when-ubdd-to-aignet-memo-p (implies (ubdd-to-aignet-memo-p x) (iff (litp (cdr (hons-assoc-equal acl2::k x))) (or (hons-assoc-equal acl2::k x) (litp nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-ubdd-to-aignet-memo-p-rewrite (implies (ubdd-to-aignet-memo-p x) (alistp x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-ubdd-to-aignet-memo-p (implies (ubdd-to-aignet-memo-p x) (alistp x)) :rule-classes :tau-system)
Theorem:
(defthm litp-of-cdar-when-ubdd-to-aignet-memo-p (implies (ubdd-to-aignet-memo-p x) (iff (litp (cdar x)) (or (consp x) (litp nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm ubdd/level-p-of-caar-when-ubdd-to-aignet-memo-p (implies (ubdd-to-aignet-memo-p x) (iff (ubdd/level-p (caar x)) (or (consp x) (ubdd/level-p nil)))) :rule-classes ((:rewrite)))