• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-with-tracking
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-marked
        • Aignet-complete-copy
        • Aignet-transforms
          • Aignet-output-ranges
          • Aignet-comb-transforms
            • Fraig
            • Parametrize
              • Aignet-parametrize-output-ranges
              • Aignet-parametrize-copy-set-regs
              • Aignet-parametrize-copy-set-ins
              • Aignet-parametrize-collect-bdd-order-aux
              • Aignet-parametrize-collect-bdd-order
              • Aignet-output-range-conjoin-ubdds
              • Aignet-output-range-collect-in/reg-ubdd-order
              • Aignet-finish-reg-ubdd-order
              • Aignet-finish-in-ubdd-order
              • Aignet-copy-dfs-output-range
              • Aignet-parametrize-m-n
              • Aignet-node-to-ubdd
              • Aignet-output-range-to-ubdds
              • Ubdd-to-aignet
              • Aignet-parametrize-copy-init
              • Parametrize-config
              • Parametrize-output-type
              • Ubdd-arr-to-param-space
              • Copy-lits-compose
              • Bitarr-range-1bit-indices
              • Bitarr-range-count
              • Aignet-count-ubdd-branches-wrap
              • Ubdd-to-aignet-memo-ok
              • Aignet-node-to-ubdd-build-cond
              • Copy-lits-compose-in-place
              • Bitarr-range-set
              • Ubdd/level
              • Ubdd-arr
              • Ubdd-arr-max-depth
              • Aignet-count-ubdd-branches
              • Ubdd-negate-cond
              • Ubdd-apply-gate
              • Aignet-node-to-ubdd-short-circuit-cond
              • Bits->bools
              • Eval-ubddarr
              • Ubdd-to-aignet-memo
                • Ubdd-to-aignet-memo-p
                  • Ubdd-to-aignet-memo-fix
                  • Ubdd-to-aignet-memo-equiv
                • Parametrize-output-type-map
                • Lubdd-fix
              • Observability-fix
              • Constprop
              • Apply-m-assumption-n-output-output-transform-default
              • Balance
              • Apply-n-output-comb-transform-default
              • Apply-comb-transform-default
              • Obs-constprop
              • Rewrite
              • Comb-transform
              • Abc-comb-simplify
              • Prune
              • Rewrite!
              • M-assumption-n-output-comb-transform->name
              • N-output-comb-transform->name
              • Comb-transform->name
              • N-output-comb-transformlist
              • M-assumption-n-output-comb-transformlist
              • Comb-transformlist
              • Apply-comb-transform
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Ubdd-to-aignet-memo

    Ubdd-to-aignet-memo-p

    Recognizer for ubdd-to-aignet-memo.

    Signature
    (ubdd-to-aignet-memo-p x) → *

    Definitions and Theorems

    Function: ubdd-to-aignet-memo-p

    (defun ubdd-to-aignet-memo-p (x)
      (declare (xargs :guard t))
      (let ((__function__ 'ubdd-to-aignet-memo-p))
        (declare (ignorable __function__))
        (if (atom x)
            (eq x nil)
          (and (consp (car x))
               (ubdd/level-p (caar x))
               (litp (cdar x))
               (ubdd-to-aignet-memo-p (cdr x))))))

    Theorem: ubdd-to-aignet-memo-p-of-revappend

    (defthm ubdd-to-aignet-memo-p-of-revappend
      (equal (ubdd-to-aignet-memo-p (revappend x acl2::y))
             (and (ubdd-to-aignet-memo-p (acl2::list-fix x))
                  (ubdd-to-aignet-memo-p acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-remove

    (defthm ubdd-to-aignet-memo-p-of-remove
      (implies (ubdd-to-aignet-memo-p x)
               (ubdd-to-aignet-memo-p (remove acl2::a x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-last

    (defthm ubdd-to-aignet-memo-p-of-last
      (implies (ubdd-to-aignet-memo-p (double-rewrite x))
               (ubdd-to-aignet-memo-p (last x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-nthcdr

    (defthm ubdd-to-aignet-memo-p-of-nthcdr
      (implies (ubdd-to-aignet-memo-p (double-rewrite x))
               (ubdd-to-aignet-memo-p (nthcdr acl2::n x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-butlast

    (defthm ubdd-to-aignet-memo-p-of-butlast
      (implies (ubdd-to-aignet-memo-p (double-rewrite x))
               (ubdd-to-aignet-memo-p (butlast x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-update-nth

    (defthm ubdd-to-aignet-memo-p-of-update-nth
      (implies
           (ubdd-to-aignet-memo-p (double-rewrite x))
           (iff (ubdd-to-aignet-memo-p (update-nth acl2::n acl2::y x))
                (and (and (consp acl2::y)
                          (ubdd/level-p (car acl2::y))
                          (litp (cdr acl2::y)))
                     (or (<= (nfix acl2::n) (len x))
                         (and (consp nil)
                              (ubdd/level-p (car nil))
                              (litp (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-repeat

    (defthm ubdd-to-aignet-memo-p-of-repeat
      (iff (ubdd-to-aignet-memo-p (acl2::repeat acl2::n x))
           (or (and (consp x)
                    (ubdd/level-p (car x))
                    (litp (cdr x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-take

    (defthm ubdd-to-aignet-memo-p-of-take
      (implies (ubdd-to-aignet-memo-p (double-rewrite x))
               (iff (ubdd-to-aignet-memo-p (take acl2::n x))
                    (or (and (consp nil)
                             (ubdd/level-p (car nil))
                             (litp (cdr nil)))
                        (<= (nfix acl2::n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-union-equal

    (defthm ubdd-to-aignet-memo-p-of-union-equal
      (equal (ubdd-to-aignet-memo-p (union-equal x acl2::y))
             (and (ubdd-to-aignet-memo-p (acl2::list-fix x))
                  (ubdd-to-aignet-memo-p (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-intersection-equal-2

    (defthm ubdd-to-aignet-memo-p-of-intersection-equal-2
      (implies (ubdd-to-aignet-memo-p (double-rewrite acl2::y))
               (ubdd-to-aignet-memo-p (intersection-equal x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-intersection-equal-1

    (defthm ubdd-to-aignet-memo-p-of-intersection-equal-1
      (implies (ubdd-to-aignet-memo-p (double-rewrite x))
               (ubdd-to-aignet-memo-p (intersection-equal x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-set-difference-equal

    (defthm ubdd-to-aignet-memo-p-of-set-difference-equal
      (implies (ubdd-to-aignet-memo-p x)
               (ubdd-to-aignet-memo-p (set-difference-equal x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-when-subsetp-equal

    (defthm ubdd-to-aignet-memo-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x acl2::y)
                         (ubdd-to-aignet-memo-p acl2::y))
                    (equal (ubdd-to-aignet-memo-p x)
                           (true-listp x)))
           (implies (and (ubdd-to-aignet-memo-p acl2::y)
                         (subsetp-equal x acl2::y))
                    (equal (ubdd-to-aignet-memo-p x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-rcons

    (defthm ubdd-to-aignet-memo-p-of-rcons
      (iff (ubdd-to-aignet-memo-p (acl2::rcons acl2::a x))
           (and (and (consp acl2::a)
                     (ubdd/level-p (car acl2::a))
                     (litp (cdr acl2::a)))
                (ubdd-to-aignet-memo-p (acl2::list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-append

    (defthm ubdd-to-aignet-memo-p-of-append
      (equal (ubdd-to-aignet-memo-p (append acl2::a acl2::b))
             (and (ubdd-to-aignet-memo-p (acl2::list-fix acl2::a))
                  (ubdd-to-aignet-memo-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-rev

    (defthm ubdd-to-aignet-memo-p-of-rev
      (equal (ubdd-to-aignet-memo-p (acl2::rev x))
             (ubdd-to-aignet-memo-p (acl2::list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-duplicated-members

    (defthm ubdd-to-aignet-memo-p-of-duplicated-members
      (implies (ubdd-to-aignet-memo-p x)
               (ubdd-to-aignet-memo-p (acl2::duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-difference

    (defthm ubdd-to-aignet-memo-p-of-difference
      (implies (ubdd-to-aignet-memo-p x)
               (ubdd-to-aignet-memo-p (set::difference x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-intersect-2

    (defthm ubdd-to-aignet-memo-p-of-intersect-2
      (implies (ubdd-to-aignet-memo-p acl2::y)
               (ubdd-to-aignet-memo-p (set::intersect x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-intersect-1

    (defthm ubdd-to-aignet-memo-p-of-intersect-1
      (implies (ubdd-to-aignet-memo-p x)
               (ubdd-to-aignet-memo-p (set::intersect x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-union

    (defthm ubdd-to-aignet-memo-p-of-union
      (iff (ubdd-to-aignet-memo-p (set::union x acl2::y))
           (and (ubdd-to-aignet-memo-p (set::sfix x))
                (ubdd-to-aignet-memo-p (set::sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-mergesort

    (defthm ubdd-to-aignet-memo-p-of-mergesort
      (iff (ubdd-to-aignet-memo-p (set::mergesort x))
           (ubdd-to-aignet-memo-p (acl2::list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-delete

    (defthm ubdd-to-aignet-memo-p-of-delete
      (implies (ubdd-to-aignet-memo-p x)
               (ubdd-to-aignet-memo-p (set::delete acl2::k x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-insert

    (defthm ubdd-to-aignet-memo-p-of-insert
      (iff (ubdd-to-aignet-memo-p (set::insert acl2::a x))
           (and (ubdd-to-aignet-memo-p (set::sfix x))
                (and (consp acl2::a)
                     (ubdd/level-p (car acl2::a))
                     (litp (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-sfix

    (defthm ubdd-to-aignet-memo-p-of-sfix
      (iff (ubdd-to-aignet-memo-p (set::sfix x))
           (or (ubdd-to-aignet-memo-p x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-list-fix

    (defthm ubdd-to-aignet-memo-p-of-list-fix
      (implies (ubdd-to-aignet-memo-p x)
               (ubdd-to-aignet-memo-p (acl2::list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-ubdd-to-aignet-memo-p-compound-recognizer

    (defthm true-listp-when-ubdd-to-aignet-memo-p-compound-recognizer
      (implies (ubdd-to-aignet-memo-p x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: ubdd-to-aignet-memo-p-when-not-consp

    (defthm ubdd-to-aignet-memo-p-when-not-consp
      (implies (not (consp x))
               (equal (ubdd-to-aignet-memo-p x)
                      (not x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-cdr-when-ubdd-to-aignet-memo-p

    (defthm ubdd-to-aignet-memo-p-of-cdr-when-ubdd-to-aignet-memo-p
      (implies (ubdd-to-aignet-memo-p (double-rewrite x))
               (ubdd-to-aignet-memo-p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-cons

    (defthm ubdd-to-aignet-memo-p-of-cons
      (equal (ubdd-to-aignet-memo-p (cons acl2::a x))
             (and (and (consp acl2::a)
                       (ubdd/level-p (car acl2::a))
                       (litp (cdr acl2::a)))
                  (ubdd-to-aignet-memo-p x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-remove-assoc

    (defthm ubdd-to-aignet-memo-p-of-remove-assoc
     (implies (ubdd-to-aignet-memo-p x)
              (ubdd-to-aignet-memo-p (remove-assoc-equal acl2::name x)))
     :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-put-assoc

    (defthm ubdd-to-aignet-memo-p-of-put-assoc
     (implies
      (and (ubdd-to-aignet-memo-p x))
      (iff
        (ubdd-to-aignet-memo-p (put-assoc-equal acl2::name acl2::val x))
        (and (ubdd/level-p acl2::name)
             (litp acl2::val))))
     :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-fast-alist-clean

    (defthm ubdd-to-aignet-memo-p-of-fast-alist-clean
      (implies (ubdd-to-aignet-memo-p x)
               (ubdd-to-aignet-memo-p (fast-alist-clean x)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-hons-shrink-alist

    (defthm ubdd-to-aignet-memo-p-of-hons-shrink-alist
      (implies (and (ubdd-to-aignet-memo-p x)
                    (ubdd-to-aignet-memo-p acl2::y))
               (ubdd-to-aignet-memo-p (hons-shrink-alist x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: ubdd-to-aignet-memo-p-of-hons-acons

    (defthm ubdd-to-aignet-memo-p-of-hons-acons
      (equal (ubdd-to-aignet-memo-p (hons-acons acl2::a acl2::n x))
             (and (ubdd/level-p acl2::a)
                  (litp acl2::n)
                  (ubdd-to-aignet-memo-p x)))
      :rule-classes ((:rewrite)))

    Theorem: litp-of-cdr-of-hons-assoc-equal-when-ubdd-to-aignet-memo-p

    (defthm litp-of-cdr-of-hons-assoc-equal-when-ubdd-to-aignet-memo-p
      (implies (ubdd-to-aignet-memo-p x)
               (iff (litp (cdr (hons-assoc-equal acl2::k x)))
                    (or (hons-assoc-equal acl2::k x)
                        (litp nil))))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-ubdd-to-aignet-memo-p-rewrite

    (defthm alistp-when-ubdd-to-aignet-memo-p-rewrite
      (implies (ubdd-to-aignet-memo-p x)
               (alistp x))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-ubdd-to-aignet-memo-p

    (defthm alistp-when-ubdd-to-aignet-memo-p
      (implies (ubdd-to-aignet-memo-p x)
               (alistp x))
      :rule-classes :tau-system)

    Theorem: litp-of-cdar-when-ubdd-to-aignet-memo-p

    (defthm litp-of-cdar-when-ubdd-to-aignet-memo-p
      (implies (ubdd-to-aignet-memo-p x)
               (iff (litp (cdar x))
                    (or (consp x) (litp nil))))
      :rule-classes ((:rewrite)))

    Theorem: ubdd/level-p-of-caar-when-ubdd-to-aignet-memo-p

    (defthm ubdd/level-p-of-caar-when-ubdd-to-aignet-memo-p
      (implies (ubdd-to-aignet-memo-p x)
               (iff (ubdd/level-p (caar x))
                    (or (consp x) (ubdd/level-p nil))))
      :rule-classes ((:rewrite)))