Recognizer for message-set.
(message-setp x) → *
Function:
(defun message-setp (x) (declare (xargs :guard t)) (if (atom x) (null x) (and (messagep (car x)) (or (null (cdr x)) (and (consp (cdr x)) (acl2::fast-<< (car x) (cadr x)) (message-setp (cdr x)))))))
Theorem:
(defthm booleanp-ofmessage-setp (booleanp (message-setp x)))
Theorem:
(defthm setp-when-message-setp (implies (message-setp x) (setp x)) :rule-classes (:rewrite))
Theorem:
(defthm messagep-of-head-when-message-setp (implies (message-setp x) (equal (messagep (head x)) (not (emptyp x)))))
Theorem:
(defthm message-setp-of-tail-when-message-setp (implies (message-setp x) (message-setp (tail x))))
Theorem:
(defthm message-setp-of-insert (equal (message-setp (insert a x)) (and (messagep a) (message-setp (sfix x)))))
Theorem:
(defthm messagep-when-in-message-setp-binds-free-x (implies (and (in a x) (message-setp x)) (messagep a)))
Theorem:
(defthm not-in-message-setp-when-not-messagep (implies (and (message-setp x) (not (messagep a))) (not (in a x))))
Theorem:
(defthm message-setp-of-union (equal (message-setp (union x y)) (and (message-setp (sfix x)) (message-setp (sfix y)))))
Theorem:
(defthm message-setp-of-intersect (implies (and (message-setp x) (message-setp y)) (message-setp (intersect x y))))
Theorem:
(defthm message-setp-of-difference (implies (message-setp x) (message-setp (difference x y))))
Theorem:
(defthm message-setp-of-delete (implies (message-setp x) (message-setp (delete a x))))