Fixing function for message structures.
Function:
(defun message-fix$inline (x) (declare (xargs :guard (messagep x))) (let ((__function__ 'message-fix)) (declare (ignorable __function__)) (mbe :logic (case (message-kind x) (:proposal (b* ((proposal (proposal-fix (std::da-nth 0 (cdr x)))) (destination (address-fix (std::da-nth 1 (cdr x))))) (cons :proposal (list proposal destination)))) (:endorsement (b* ((proposal (proposal-fix (std::da-nth 0 (cdr x)))) (endorser (address-fix (std::da-nth 1 (cdr x))))) (cons :endorsement (list proposal endorser)))) (:certificate (b* ((certificate (certificate-fix (std::da-nth 0 (cdr x)))) (destination (address-fix (std::da-nth 1 (cdr x))))) (cons :certificate (list certificate destination))))) :exec x)))
Theorem:
(defthm messagep-of-message-fix (b* ((new-x (message-fix$inline x))) (messagep new-x)) :rule-classes :rewrite)
Theorem:
(defthm message-fix-when-messagep (implies (messagep x) (equal (message-fix x) x)))
Function:
(defun message-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (messagep acl2::x) (messagep acl2::y)))) (equal (message-fix acl2::x) (message-fix acl2::y)))
Theorem:
(defthm message-equiv-is-an-equivalence (and (booleanp (message-equiv x y)) (message-equiv x x) (implies (message-equiv x y) (message-equiv y x)) (implies (and (message-equiv x y) (message-equiv y z)) (message-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm message-equiv-implies-equal-message-fix-1 (implies (message-equiv acl2::x x-equiv) (equal (message-fix acl2::x) (message-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm message-fix-under-message-equiv (message-equiv (message-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-message-fix-1-forward-to-message-equiv (implies (equal (message-fix acl2::x) acl2::y) (message-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-message-fix-2-forward-to-message-equiv (implies (equal acl2::x (message-fix acl2::y)) (message-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm message-equiv-of-message-fix-1-forward (implies (message-equiv (message-fix acl2::x) acl2::y) (message-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm message-equiv-of-message-fix-2-forward (implies (message-equiv acl2::x (message-fix acl2::y)) (message-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm message-kind$inline-of-message-fix-x (equal (message-kind$inline (message-fix x)) (message-kind$inline x)))
Theorem:
(defthm message-kind$inline-message-equiv-congruence-on-x (implies (message-equiv x x-equiv) (equal (message-kind$inline x) (message-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-message-fix (consp (message-fix x)) :rule-classes :type-prescription)