Basic equivalence relation for message-set structures.
Function:
(defun message-set-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (message-setp acl2::x) (message-setp acl2::y)))) (equal (message-set-fix acl2::x) (message-set-fix acl2::y)))
Theorem:
(defthm message-set-equiv-is-an-equivalence (and (booleanp (message-set-equiv x y)) (message-set-equiv x x) (implies (message-set-equiv x y) (message-set-equiv y x)) (implies (and (message-set-equiv x y) (message-set-equiv y z)) (message-set-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm message-set-equiv-implies-equal-message-set-fix-1 (implies (message-set-equiv acl2::x x-equiv) (equal (message-set-fix acl2::x) (message-set-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm message-set-fix-under-message-set-equiv (message-set-equiv (message-set-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-message-set-fix-1-forward-to-message-set-equiv (implies (equal (message-set-fix acl2::x) acl2::y) (message-set-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-message-set-fix-2-forward-to-message-set-equiv (implies (equal acl2::x (message-set-fix acl2::y)) (message-set-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm message-set-equiv-of-message-set-fix-1-forward (implies (message-set-equiv (message-set-fix acl2::x) acl2::y) (message-set-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm message-set-equiv-of-message-set-fix-2-forward (implies (message-set-equiv acl2::x (message-set-fix acl2::y)) (message-set-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)