Recognizer for certificate-set.
(certificate-setp x) → *
Function:
(defun certificate-setp (x) (declare (xargs :guard t)) (if (atom x) (null x) (and (certificatep (car x)) (or (null (cdr x)) (and (consp (cdr x)) (acl2::fast-<< (car x) (cadr x)) (certificate-setp (cdr x)))))))
Theorem:
(defthm booleanp-ofcertificate-setp (booleanp (certificate-setp x)))
Theorem:
(defthm setp-when-certificate-setp (implies (certificate-setp x) (setp x)) :rule-classes (:rewrite))
Theorem:
(defthm certificatep-of-head-when-certificate-setp (implies (certificate-setp x) (equal (certificatep (head x)) (not (emptyp x)))))
Theorem:
(defthm certificate-setp-of-tail-when-certificate-setp (implies (certificate-setp x) (certificate-setp (tail x))))
Theorem:
(defthm certificate-setp-of-insert (equal (certificate-setp (insert a x)) (and (certificatep a) (certificate-setp (sfix x)))))
Theorem:
(defthm certificatep-when-in-certificate-setp-binds-free-x (implies (and (in a x) (certificate-setp x)) (certificatep a)))
Theorem:
(defthm not-in-certificate-setp-when-not-certificatep (implies (and (certificate-setp x) (not (certificatep a))) (not (in a x))))
Theorem:
(defthm certificate-setp-of-union (equal (certificate-setp (union x y)) (and (certificate-setp (sfix x)) (certificate-setp (sfix y)))))
Theorem:
(defthm certificate-setp-of-intersect (implies (and (certificate-setp x) (certificate-setp y)) (certificate-setp (intersect x y))))
Theorem:
(defthm certificate-setp-of-difference (implies (certificate-setp x) (certificate-setp (difference x y))))
Theorem:
(defthm certificate-setp-of-delete (implies (certificate-setp x) (certificate-setp (delete a x))))