Basic equivalence relation for timer structures.
Function:
(defun timer-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (timerp acl2::x) (timerp acl2::y)))) (equal (timer-fix acl2::x) (timer-fix acl2::y)))
Theorem:
(defthm timer-equiv-is-an-equivalence (and (booleanp (timer-equiv x y)) (timer-equiv x x) (implies (timer-equiv x y) (timer-equiv y x)) (implies (and (timer-equiv x y) (timer-equiv y z)) (timer-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm timer-equiv-implies-equal-timer-fix-1 (implies (timer-equiv acl2::x x-equiv) (equal (timer-fix acl2::x) (timer-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm timer-fix-under-timer-equiv (timer-equiv (timer-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-timer-fix-1-forward-to-timer-equiv (implies (equal (timer-fix acl2::x) acl2::y) (timer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-timer-fix-2-forward-to-timer-equiv (implies (equal acl2::x (timer-fix acl2::y)) (timer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm timer-equiv-of-timer-fix-1-forward (implies (timer-equiv (timer-fix acl2::x) acl2::y) (timer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm timer-equiv-of-timer-fix-2-forward (implies (timer-equiv acl2::x (timer-fix acl2::y)) (timer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)