(sparseint$-binary-bitop-offset op x x.height y-offset y y.height) → (mv binary-res height)
Function:
(defun sparseint$-binary-bitop-offset (op x x.height y-offset y y.height) (declare (type (unsigned-byte 4) op)) (declare (xargs :guard (and (integerp op) (sparseint$-p x) (natp x.height) (natp y-offset) (sparseint$-p y) (natp y.height)))) (declare (xargs :guard (and (sparseint$-height-correctp x) (equal x.height (sparseint$-height x)) (sparseint$-height-correctp y) (equal y.height (sparseint$-height y))))) (let ((__function__ 'sparseint$-binary-bitop-offset)) (declare (ignorable __function__)) (b* ((x.height (mbe :logic (sparseint$-height x) :exec x.height)) (y.height (mbe :logic (sparseint$-height y) :exec y.height)) (y-offset (lnfix y-offset))) (sparseint$-case x :leaf (sparseint$-case y :leaf (mv (sparseint$-leaf (binary-bitop op x.val (logtail y-offset y.val))) 0) :concat (sparseint$-binary-bitop-int (binary-bitop-swap op) y-offset y y.height x.val)) :concat (sparseint$-case y :leaf (sparseint$-binary-bitop-int op 0 x x.height (logtail y-offset y.val)) :concat (b* ((y.msbs.height (mbe :logic (sparseint$-height y.msbs) :exec (- y.height (if y.lsbs-taller 2 1)))) ((when (<= y.width y-offset)) (sparseint$-binary-bitop-offset op x x.height (- y-offset y.width) y.msbs y.msbs.height)) (x.lsbs.height (mbe :logic (sparseint$-height x.lsbs) :exec (- x.height (if x.msbs-taller 2 1)))) ((mv lsbs-and lsbs-and.height) (sparseint$-binary-bitop-width op x.width x.lsbs x.lsbs.height y-offset y y.height)) (x.msbs.height (mbe :logic (sparseint$-height x.msbs) :exec (- x.height (if x.lsbs-taller 2 1)))) ((mv msbs-and msbs-and.height) (sparseint$-binary-bitop-offset op x.msbs x.msbs.height (+ x.width y-offset) y y.height))) (sparseint$-concatenate-rebalance x.width lsbs-and lsbs-and.height msbs-and msbs-and.height)))))))
Theorem:
(defthm sparseint$-p-of-sparseint$-binary-bitop-offset.binary-res (b* (((mv ?binary-res ?height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height))) (sparseint$-p binary-res)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-sparseint$-binary-bitop-offset.height (b* (((mv ?binary-res ?height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height))) (equal height (sparseint$-height binary-res))) :rule-classes :rewrite)
Theorem:
(defthm sparseint$-height-correctp-of-sparseint$-binary-bitop-offset (b* (((mv ?binary-res ?height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height))) (implies (and (sparseint$-height-correctp x) (sparseint$-height-correctp y)) (sparseint$-height-correctp binary-res))))
Theorem:
(defthm sparseint$-val-of-sparseint$-binary-bitop-offset (b* (((mv ?binary-res ?height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height))) (equal (sparseint$-val binary-res) (binary-bitop op (sparseint$-val x) (logtail y-offset (sparseint$-val y))))))
Theorem:
(defthm sparseint$-binary-bitop-offset-of-ifix-op (equal (sparseint$-binary-bitop-offset (ifix op) x x.height y-offset y y.height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height)))
Theorem:
(defthm sparseint$-binary-bitop-offset-int-equiv-congruence-on-op (implies (int-equiv op op-equiv) (equal (sparseint$-binary-bitop-offset op x x.height y-offset y y.height) (sparseint$-binary-bitop-offset op-equiv x x.height y-offset y y.height))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-binary-bitop-offset-of-sparseint$-fix-x (equal (sparseint$-binary-bitop-offset op (sparseint$-fix x) x.height y-offset y y.height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height)))
Theorem:
(defthm sparseint$-binary-bitop-offset-sparseint$-equiv-congruence-on-x (implies (sparseint$-equiv x x-equiv) (equal (sparseint$-binary-bitop-offset op x x.height y-offset y y.height) (sparseint$-binary-bitop-offset op x-equiv x.height y-offset y y.height))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-binary-bitop-offset-of-nfix-x.height (equal (sparseint$-binary-bitop-offset op x (nfix x.height) y-offset y y.height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height)))
Theorem:
(defthm sparseint$-binary-bitop-offset-nat-equiv-congruence-on-x.height (implies (nat-equiv x.height x.height-equiv) (equal (sparseint$-binary-bitop-offset op x x.height y-offset y y.height) (sparseint$-binary-bitop-offset op x x.height-equiv y-offset y y.height))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-binary-bitop-offset-of-nfix-y-offset (equal (sparseint$-binary-bitop-offset op x x.height (nfix y-offset) y y.height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height)))
Theorem:
(defthm sparseint$-binary-bitop-offset-nat-equiv-congruence-on-y-offset (implies (nat-equiv y-offset y-offset-equiv) (equal (sparseint$-binary-bitop-offset op x x.height y-offset y y.height) (sparseint$-binary-bitop-offset op x x.height y-offset-equiv y y.height))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-binary-bitop-offset-of-sparseint$-fix-y (equal (sparseint$-binary-bitop-offset op x x.height y-offset (sparseint$-fix y) y.height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height)))
Theorem:
(defthm sparseint$-binary-bitop-offset-sparseint$-equiv-congruence-on-y (implies (sparseint$-equiv y y-equiv) (equal (sparseint$-binary-bitop-offset op x x.height y-offset y y.height) (sparseint$-binary-bitop-offset op x x.height y-offset y-equiv y.height))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-binary-bitop-offset-of-nfix-y.height (equal (sparseint$-binary-bitop-offset op x x.height y-offset y (nfix y.height)) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height)))
Theorem:
(defthm sparseint$-binary-bitop-offset-nat-equiv-congruence-on-y.height (implies (nat-equiv y.height y.height-equiv) (equal (sparseint$-binary-bitop-offset op x x.height y-offset y y.height) (sparseint$-binary-bitop-offset op x x.height y-offset y y.height-equiv))) :rule-classes :congruence)