(sparseint$-plus-width width x x.height y-offset y y.height cin) → (mv sum height cout)
Function:
(defun sparseint$-plus-width (width x x.height y-offset y y.height cin) (declare (xargs :guard (and (posp width) (sparseint$-p x) (natp x.height) (natp y-offset) (sparseint$-p y) (natp y.height) (bitp cin)))) (declare (xargs :guard (and (sparseint$-height-correctp x) (equal x.height (sparseint$-height x)) (sparseint$-height-correctp y) (equal y.height (sparseint$-height y))))) (let ((__function__ 'sparseint$-plus-width)) (declare (ignorable __function__)) (b* ((x.height (mbe :logic (sparseint$-height x) :exec x.height)) (y.height (mbe :logic (sparseint$-height y) :exec y.height)) (width (lposfix width)) (y-offset (lnfix y-offset))) (sparseint$-case x :leaf (sparseint$-case y :leaf (b* ((yval (bignum-logext width (logtail y-offset y.val))) (xval (bignum-logext width x.val)) (sum (bignum-logext width (sum-with-cin cin xval yval))) (cout (carry-out-bit (logbit (1- width) xval) (logbit (1- width) yval) (logbit (1- width) sum)))) (mv (sparseint$-leaf sum) 0 cout)) :concat (sparseint$-plus-int-width width y-offset y y.height (bignum-logext width x.val) cin)) :concat (sparseint$-case y :leaf (sparseint$-plus-int-width width 0 x x.height (bignum-logext width (logtail y-offset y.val)) cin) :concat (b* ((x.lsbs.height (mbe :logic (sparseint$-height x.lsbs) :exec (- x.height (if x.msbs-taller 2 1)))) ((when (<= width x.width)) (sparseint$-plus-width width x.lsbs x.lsbs.height y-offset y y.height cin)) (y.msbs.height (mbe :logic (sparseint$-height y.msbs) :exec (- y.height (if y.lsbs-taller 2 1)))) ((when (<= y.width y-offset)) (sparseint$-plus-width width x x.height (- y-offset y.width) y.msbs y.msbs.height cin)) (y-width1 (- y.width y-offset)) (y.lsbs.height (mbe :logic (sparseint$-height y.lsbs) :exec (- y.height (if y.msbs-taller 2 1)))) ((when (<= width y-width1)) (sparseint$-plus-width width x x.height y-offset y.lsbs y.lsbs.height cin)) ((mv lsbs-sum lsbs-sum.height lsbs-cout) (sparseint$-plus-width x.width x.lsbs x.lsbs.height y-offset y y.height cin)) (x.msbs.height (mbe :logic (sparseint$-height x.msbs) :exec (- x.height (if x.lsbs-taller 2 1)))) ((mv msbs-sum msbs-sum.height msbs-cout) (sparseint$-plus-width (- width x.width) x.msbs x.msbs.height (+ x.width y-offset) y y.height lsbs-cout)) ((mv sum-concat sum-height) (sparseint$-concatenate-rebalance x.width lsbs-sum lsbs-sum.height msbs-sum msbs-sum.height))) (mv sum-concat sum-height msbs-cout)))))))
Theorem:
(defthm sparseint$-p-of-sparseint$-plus-width.sum (b* (((mv ?sum ?height ?cout) (sparseint$-plus-width width x x.height y-offset y y.height cin))) (sparseint$-p sum)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-sparseint$-plus-width.height (b* (((mv ?sum ?height ?cout) (sparseint$-plus-width width x x.height y-offset y y.height cin))) (equal height (sparseint$-height sum))) :rule-classes :rewrite)
Theorem:
(defthm bitp-of-sparseint$-plus-width.cout (b* (((mv ?sum ?height ?cout) (sparseint$-plus-width width x x.height y-offset y y.height cin))) (bitp cout)) :rule-classes :type-prescription)
Theorem:
(defthm sparseint$-height-correctp-of-sparseint$-plus-width (b* (((mv ?sum ?height ?cout) (sparseint$-plus-width width x x.height y-offset y y.height cin))) (implies (and (sparseint$-height-correctp x) (sparseint$-height-correctp y)) (sparseint$-height-correctp sum))))
Theorem:
(defthm sparseint$-val-of-sparseint$-plus-width (b* (((mv ?sum ?height ?cout) (sparseint$-plus-width width x x.height y-offset y y.height cin))) (and (equal (sparseint$-val sum) (logext width (sum-with-cin cin (sparseint$-val x) (logtail y-offset (sparseint$-val y))))) (equal cout (carry-out width cin (sparseint$-val x) (logtail y-offset (sparseint$-val y)))))))
Theorem:
(defthm sparseint$-plus-width-of-pos-fix-width (equal (sparseint$-plus-width (pos-fix width) x x.height y-offset y y.height cin) (sparseint$-plus-width width x x.height y-offset y y.height cin)))
Theorem:
(defthm sparseint$-plus-width-pos-equiv-congruence-on-width (implies (pos-equiv width width-equiv) (equal (sparseint$-plus-width width x x.height y-offset y y.height cin) (sparseint$-plus-width width-equiv x x.height y-offset y y.height cin))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-plus-width-of-sparseint$-fix-x (equal (sparseint$-plus-width width (sparseint$-fix x) x.height y-offset y y.height cin) (sparseint$-plus-width width x x.height y-offset y y.height cin)))
Theorem:
(defthm sparseint$-plus-width-sparseint$-equiv-congruence-on-x (implies (sparseint$-equiv x x-equiv) (equal (sparseint$-plus-width width x x.height y-offset y y.height cin) (sparseint$-plus-width width x-equiv x.height y-offset y y.height cin))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-plus-width-of-nfix-x.height (equal (sparseint$-plus-width width x (nfix x.height) y-offset y y.height cin) (sparseint$-plus-width width x x.height y-offset y y.height cin)))
Theorem:
(defthm sparseint$-plus-width-nat-equiv-congruence-on-x.height (implies (nat-equiv x.height x.height-equiv) (equal (sparseint$-plus-width width x x.height y-offset y y.height cin) (sparseint$-plus-width width x x.height-equiv y-offset y y.height cin))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-plus-width-of-nfix-y-offset (equal (sparseint$-plus-width width x x.height (nfix y-offset) y y.height cin) (sparseint$-plus-width width x x.height y-offset y y.height cin)))
Theorem:
(defthm sparseint$-plus-width-nat-equiv-congruence-on-y-offset (implies (nat-equiv y-offset y-offset-equiv) (equal (sparseint$-plus-width width x x.height y-offset y y.height cin) (sparseint$-plus-width width x x.height y-offset-equiv y y.height cin))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-plus-width-of-sparseint$-fix-y (equal (sparseint$-plus-width width x x.height y-offset (sparseint$-fix y) y.height cin) (sparseint$-plus-width width x x.height y-offset y y.height cin)))
Theorem:
(defthm sparseint$-plus-width-sparseint$-equiv-congruence-on-y (implies (sparseint$-equiv y y-equiv) (equal (sparseint$-plus-width width x x.height y-offset y y.height cin) (sparseint$-plus-width width x x.height y-offset y-equiv y.height cin))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-plus-width-of-nfix-y.height (equal (sparseint$-plus-width width x x.height y-offset y (nfix y.height) cin) (sparseint$-plus-width width x x.height y-offset y y.height cin)))
Theorem:
(defthm sparseint$-plus-width-nat-equiv-congruence-on-y.height (implies (nat-equiv y.height y.height-equiv) (equal (sparseint$-plus-width width x x.height y-offset y y.height cin) (sparseint$-plus-width width x x.height y-offset y y.height-equiv cin))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-plus-width-of-bfix-cin (equal (sparseint$-plus-width width x x.height y-offset y y.height (bfix cin)) (sparseint$-plus-width width x x.height y-offset y y.height cin)))
Theorem:
(defthm sparseint$-plus-width-bit-equiv-congruence-on-cin (implies (bit-equiv cin cin-equiv) (equal (sparseint$-plus-width width x x.height y-offset y y.height cin) (sparseint$-plus-width width x x.height y-offset y y.height cin-equiv))) :rule-classes :congruence)