(sparseint$-real-height x) → height
Function:
(defun sparseint$-real-height (x) (declare (xargs :guard (sparseint$-p x))) (let ((__function__ 'sparseint$-real-height)) (declare (ignorable __function__)) (sparseint$-case x :leaf 0 :concat (+ 1 (max (sparseint$-real-height x.lsbs) (sparseint$-real-height x.msbs))))))
Theorem:
(defthm natp-of-sparseint$-real-height (b* ((height (sparseint$-real-height x))) (natp height)) :rule-classes :type-prescription)
Theorem:
(defthm sparseint$-real-height-of-sparseint$-fix-x (equal (sparseint$-real-height (sparseint$-fix x)) (sparseint$-real-height x)))
Theorem:
(defthm sparseint$-real-height-sparseint$-equiv-congruence-on-x (implies (sparseint$-equiv x x-equiv) (equal (sparseint$-real-height x) (sparseint$-real-height x-equiv))) :rule-classes :congruence)