Basic equivalence relation for ident-paramdecl-map structures.
Function:
(defun ident-paramdecl-map-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (ident-paramdecl-mapp acl2::x) (ident-paramdecl-mapp acl2::y)))) (equal (ident-paramdecl-map-fix acl2::x) (ident-paramdecl-map-fix acl2::y)))
Theorem:
(defthm ident-paramdecl-map-equiv-is-an-equivalence (and (booleanp (ident-paramdecl-map-equiv x y)) (ident-paramdecl-map-equiv x x) (implies (ident-paramdecl-map-equiv x y) (ident-paramdecl-map-equiv y x)) (implies (and (ident-paramdecl-map-equiv x y) (ident-paramdecl-map-equiv y z)) (ident-paramdecl-map-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ident-paramdecl-map-equiv-implies-equal-ident-paramdecl-map-fix-1 (implies (ident-paramdecl-map-equiv acl2::x x-equiv) (equal (ident-paramdecl-map-fix acl2::x) (ident-paramdecl-map-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ident-paramdecl-map-fix-under-ident-paramdecl-map-equiv (ident-paramdecl-map-equiv (ident-paramdecl-map-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ident-paramdecl-map-fix-1-forward-to-ident-paramdecl-map-equiv (implies (equal (ident-paramdecl-map-fix acl2::x) acl2::y) (ident-paramdecl-map-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ident-paramdecl-map-fix-2-forward-to-ident-paramdecl-map-equiv (implies (equal acl2::x (ident-paramdecl-map-fix acl2::y)) (ident-paramdecl-map-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ident-paramdecl-map-equiv-of-ident-paramdecl-map-fix-1-forward (implies (ident-paramdecl-map-equiv (ident-paramdecl-map-fix acl2::x) acl2::y) (ident-paramdecl-map-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ident-paramdecl-map-equiv-of-ident-paramdecl-map-fix-2-forward (implies (ident-paramdecl-map-equiv acl2::x (ident-paramdecl-map-fix acl2::y)) (ident-paramdecl-map-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)