Basic equivalence relation for qualified-ident structures.
Function:
(defun qualified-ident-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (qualified-identp acl2::x) (qualified-identp acl2::y)))) (equal (qualified-ident-fix acl2::x) (qualified-ident-fix acl2::y)))
Theorem:
(defthm qualified-ident-equiv-is-an-equivalence (and (booleanp (qualified-ident-equiv x y)) (qualified-ident-equiv x x) (implies (qualified-ident-equiv x y) (qualified-ident-equiv y x)) (implies (and (qualified-ident-equiv x y) (qualified-ident-equiv y z)) (qualified-ident-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm qualified-ident-equiv-implies-equal-qualified-ident-fix-1 (implies (qualified-ident-equiv acl2::x x-equiv) (equal (qualified-ident-fix acl2::x) (qualified-ident-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm qualified-ident-fix-under-qualified-ident-equiv (qualified-ident-equiv (qualified-ident-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-qualified-ident-fix-1-forward-to-qualified-ident-equiv (implies (equal (qualified-ident-fix acl2::x) acl2::y) (qualified-ident-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-qualified-ident-fix-2-forward-to-qualified-ident-equiv (implies (equal acl2::x (qualified-ident-fix acl2::y)) (qualified-ident-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm qualified-ident-equiv-of-qualified-ident-fix-1-forward (implies (qualified-ident-equiv (qualified-ident-fix acl2::x) acl2::y) (qualified-ident-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm qualified-ident-equiv-of-qualified-ident-fix-2-forward (implies (qualified-ident-equiv acl2::x (qualified-ident-fix acl2::y)) (qualified-ident-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)