Basic equivalence relation for equiv-contextslist structures.
Function:
(defun equiv-contextslist-equiv$inline (x y) (declare (xargs :guard (and (equiv-contextslist-p x) (equiv-contextslist-p y)))) (equal (equiv-contextslist-fix x) (equiv-contextslist-fix y)))
Theorem:
(defthm equiv-contextslist-equiv-is-an-equivalence (and (booleanp (equiv-contextslist-equiv x y)) (equiv-contextslist-equiv x x) (implies (equiv-contextslist-equiv x y) (equiv-contextslist-equiv y x)) (implies (and (equiv-contextslist-equiv x y) (equiv-contextslist-equiv y z)) (equiv-contextslist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm equiv-contextslist-equiv-implies-equal-equiv-contextslist-fix-1 (implies (equiv-contextslist-equiv x x-equiv) (equal (equiv-contextslist-fix x) (equiv-contextslist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm equiv-contextslist-fix-under-equiv-contextslist-equiv (equiv-contextslist-equiv (equiv-contextslist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-equiv-contextslist-fix-1-forward-to-equiv-contextslist-equiv (implies (equal (equiv-contextslist-fix x) y) (equiv-contextslist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-equiv-contextslist-fix-2-forward-to-equiv-contextslist-equiv (implies (equal x (equiv-contextslist-fix y)) (equiv-contextslist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equiv-contextslist-equiv-of-equiv-contextslist-fix-1-forward (implies (equiv-contextslist-equiv (equiv-contextslist-fix x) y) (equiv-contextslist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equiv-contextslist-equiv-of-equiv-contextslist-fix-2-forward (implies (equiv-contextslist-equiv x (equiv-contextslist-fix y)) (equiv-contextslist-equiv x y)) :rule-classes :forward-chaining)