Basic equivalence relation for binop structures.
Function:
(defun binop-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (binopp acl2::x) (binopp acl2::y)))) (equal (binop-fix acl2::x) (binop-fix acl2::y)))
Theorem:
(defthm binop-equiv-is-an-equivalence (and (booleanp (binop-equiv x y)) (binop-equiv x x) (implies (binop-equiv x y) (binop-equiv y x)) (implies (and (binop-equiv x y) (binop-equiv y z)) (binop-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm binop-equiv-implies-equal-binop-fix-1 (implies (binop-equiv acl2::x x-equiv) (equal (binop-fix acl2::x) (binop-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm binop-fix-under-binop-equiv (binop-equiv (binop-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-binop-fix-1-forward-to-binop-equiv (implies (equal (binop-fix acl2::x) acl2::y) (binop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-binop-fix-2-forward-to-binop-equiv (implies (equal acl2::x (binop-fix acl2::y)) (binop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm binop-equiv-of-binop-fix-1-forward (implies (binop-equiv (binop-fix acl2::x) acl2::y) (binop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm binop-equiv-of-binop-fix-2-forward (implies (binop-equiv acl2::x (binop-fix acl2::y)) (binop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)