Fixing function for dec-expo-prefix structures.
(dec-expo-prefix-fix x) → new-x
Function:
(defun dec-expo-prefix-fix$inline (x) (declare (xargs :guard (dec-expo-prefixp x))) (let ((__function__ 'dec-expo-prefix-fix)) (declare (ignorable __function__)) (mbe :logic (case (dec-expo-prefix-kind x) (:locase-e (cons :locase-e (list))) (:upcase-e (cons :upcase-e (list)))) :exec x)))
Theorem:
(defthm dec-expo-prefixp-of-dec-expo-prefix-fix (b* ((new-x (dec-expo-prefix-fix$inline x))) (dec-expo-prefixp new-x)) :rule-classes :rewrite)
Theorem:
(defthm dec-expo-prefix-fix-when-dec-expo-prefixp (implies (dec-expo-prefixp x) (equal (dec-expo-prefix-fix x) x)))
Function:
(defun dec-expo-prefix-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (dec-expo-prefixp acl2::x) (dec-expo-prefixp acl2::y)))) (equal (dec-expo-prefix-fix acl2::x) (dec-expo-prefix-fix acl2::y)))
Theorem:
(defthm dec-expo-prefix-equiv-is-an-equivalence (and (booleanp (dec-expo-prefix-equiv x y)) (dec-expo-prefix-equiv x x) (implies (dec-expo-prefix-equiv x y) (dec-expo-prefix-equiv y x)) (implies (and (dec-expo-prefix-equiv x y) (dec-expo-prefix-equiv y z)) (dec-expo-prefix-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm dec-expo-prefix-equiv-implies-equal-dec-expo-prefix-fix-1 (implies (dec-expo-prefix-equiv acl2::x x-equiv) (equal (dec-expo-prefix-fix acl2::x) (dec-expo-prefix-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm dec-expo-prefix-fix-under-dec-expo-prefix-equiv (dec-expo-prefix-equiv (dec-expo-prefix-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-dec-expo-prefix-fix-1-forward-to-dec-expo-prefix-equiv (implies (equal (dec-expo-prefix-fix acl2::x) acl2::y) (dec-expo-prefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-dec-expo-prefix-fix-2-forward-to-dec-expo-prefix-equiv (implies (equal acl2::x (dec-expo-prefix-fix acl2::y)) (dec-expo-prefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dec-expo-prefix-equiv-of-dec-expo-prefix-fix-1-forward (implies (dec-expo-prefix-equiv (dec-expo-prefix-fix acl2::x) acl2::y) (dec-expo-prefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dec-expo-prefix-equiv-of-dec-expo-prefix-fix-2-forward (implies (dec-expo-prefix-equiv acl2::x (dec-expo-prefix-fix acl2::y)) (dec-expo-prefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dec-expo-prefix-kind$inline-of-dec-expo-prefix-fix-x (equal (dec-expo-prefix-kind$inline (dec-expo-prefix-fix x)) (dec-expo-prefix-kind$inline x)))
Theorem:
(defthm dec-expo-prefix-kind$inline-dec-expo-prefix-equiv-congruence-on-x (implies (dec-expo-prefix-equiv x x-equiv) (equal (dec-expo-prefix-kind$inline x) (dec-expo-prefix-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-dec-expo-prefix-fix (consp (dec-expo-prefix-fix x)) :rule-classes :type-prescription)