Basic equivalence relation for desiniter structures.
Function:
(defun desiniter-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (desiniterp acl2::x) (desiniterp acl2::y)))) (equal (desiniter-fix acl2::x) (desiniter-fix acl2::y)))
Theorem:
(defthm desiniter-equiv-is-an-equivalence (and (booleanp (desiniter-equiv x y)) (desiniter-equiv x x) (implies (desiniter-equiv x y) (desiniter-equiv y x)) (implies (and (desiniter-equiv x y) (desiniter-equiv y z)) (desiniter-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm desiniter-equiv-implies-equal-desiniter-fix-1 (implies (desiniter-equiv acl2::x x-equiv) (equal (desiniter-fix acl2::x) (desiniter-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm desiniter-fix-under-desiniter-equiv (desiniter-equiv (desiniter-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-desiniter-fix-1-forward-to-desiniter-equiv (implies (equal (desiniter-fix acl2::x) acl2::y) (desiniter-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-desiniter-fix-2-forward-to-desiniter-equiv (implies (equal acl2::x (desiniter-fix acl2::y)) (desiniter-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm desiniter-equiv-of-desiniter-fix-1-forward (implies (desiniter-equiv (desiniter-fix acl2::x) acl2::y) (desiniter-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm desiniter-equiv-of-desiniter-fix-2-forward (implies (desiniter-equiv acl2::x (desiniter-fix acl2::y)) (desiniter-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)