Add an identifier to the disambiguation table, with object or function kind.
(dimb-add-ident-objfun ident table) → new-table
Function:
(defun dimb-add-ident-objfun (ident table) (declare (xargs :guard (and (identp ident) (dimb-tablep table)))) (let ((__function__ 'dimb-add-ident-objfun)) (declare (ignorable __function__)) (dimb-add-ident ident (dimb-kind-objfun) table)))
Theorem:
(defthm dimb-tablep-of-dimb-add-ident-objfun (b* ((new-table (dimb-add-ident-objfun ident table))) (dimb-tablep new-table)) :rule-classes :rewrite)
Theorem:
(defthm dimb-add-ident-objfun-of-ident-fix-ident (equal (dimb-add-ident-objfun (ident-fix ident) table) (dimb-add-ident-objfun ident table)))
Theorem:
(defthm dimb-add-ident-objfun-ident-equiv-congruence-on-ident (implies (ident-equiv ident ident-equiv) (equal (dimb-add-ident-objfun ident table) (dimb-add-ident-objfun ident-equiv table))) :rule-classes :congruence)
Theorem:
(defthm dimb-add-ident-objfun-of-dimb-table-fix-table (equal (dimb-add-ident-objfun ident (dimb-table-fix table)) (dimb-add-ident-objfun ident table)))
Theorem:
(defthm dimb-add-ident-objfun-dimb-table-equiv-congruence-on-table (implies (dimb-table-equiv table table-equiv) (equal (dimb-add-ident-objfun ident table) (dimb-add-ident-objfun ident table-equiv))) :rule-classes :congruence)