Basic equivalence relation for oct-escape structures.
Function:
(defun oct-escape-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (oct-escapep acl2::x) (oct-escapep acl2::y)))) (equal (oct-escape-fix acl2::x) (oct-escape-fix acl2::y)))
Theorem:
(defthm oct-escape-equiv-is-an-equivalence (and (booleanp (oct-escape-equiv x y)) (oct-escape-equiv x x) (implies (oct-escape-equiv x y) (oct-escape-equiv y x)) (implies (and (oct-escape-equiv x y) (oct-escape-equiv y z)) (oct-escape-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm oct-escape-equiv-implies-equal-oct-escape-fix-1 (implies (oct-escape-equiv acl2::x x-equiv) (equal (oct-escape-fix acl2::x) (oct-escape-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm oct-escape-fix-under-oct-escape-equiv (oct-escape-equiv (oct-escape-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-oct-escape-fix-1-forward-to-oct-escape-equiv (implies (equal (oct-escape-fix acl2::x) acl2::y) (oct-escape-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-oct-escape-fix-2-forward-to-oct-escape-equiv (implies (equal acl2::x (oct-escape-fix acl2::y)) (oct-escape-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm oct-escape-equiv-of-oct-escape-fix-1-forward (implies (oct-escape-equiv (oct-escape-fix acl2::x) acl2::y) (oct-escape-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm oct-escape-equiv-of-oct-escape-fix-2-forward (implies (oct-escape-equiv acl2::x (oct-escape-fix acl2::y)) (oct-escape-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)