Print an optional floating suffix.
(print-fsuffix-option fsuffix? pstate) → new-pstate
If there is no suffix, we print nothing.
Function:
(defun print-fsuffix-option (fsuffix? pstate) (declare (xargs :guard (and (fsuffix-optionp fsuffix?) (pristatep pstate)))) (let ((__function__ 'print-fsuffix-option)) (declare (ignorable __function__)) (fsuffix-option-case fsuffix? :some (print-fsuffix fsuffix?.val pstate) :none (pristate-fix pstate))))
Theorem:
(defthm pristatep-of-print-fsuffix-option (b* ((new-pstate (print-fsuffix-option fsuffix? pstate))) (pristatep new-pstate)) :rule-classes :rewrite)
Theorem:
(defthm print-fsuffix-option-of-fsuffix-option-fix-fsuffix? (equal (print-fsuffix-option (fsuffix-option-fix fsuffix?) pstate) (print-fsuffix-option fsuffix? pstate)))
Theorem:
(defthm print-fsuffix-option-fsuffix-option-equiv-congruence-on-fsuffix? (implies (fsuffix-option-equiv fsuffix? fsuffix?-equiv) (equal (print-fsuffix-option fsuffix? pstate) (print-fsuffix-option fsuffix?-equiv pstate))) :rule-classes :congruence)
Theorem:
(defthm print-fsuffix-option-of-pristate-fix-pstate (equal (print-fsuffix-option fsuffix? (pristate-fix pstate)) (print-fsuffix-option fsuffix? pstate)))
Theorem:
(defthm print-fsuffix-option-pristate-equiv-congruence-on-pstate (implies (pristate-equiv pstate pstate-equiv) (equal (print-fsuffix-option fsuffix? pstate) (print-fsuffix-option fsuffix? pstate-equiv))) :rule-classes :congruence)