Print a simple escape.
(print-simple-escape esc pstate) → new-pstate
Function:
(defun print-simple-escape (esc pstate) (declare (xargs :guard (and (simple-escapep esc) (pristatep pstate)))) (let ((__function__ 'print-simple-escape)) (declare (ignorable __function__)) (simple-escape-case esc :squote (print-astring "\\'" pstate) :dquote (print-astring "\\\"" pstate) :qmark (print-astring "\\?" pstate) :bslash (print-astring "\\\\" pstate) :a (print-astring "\\a" pstate) :b (print-astring "\\b" pstate) :f (print-astring "\\f" pstate) :n (print-astring "\\n" pstate) :r (print-astring "\\r" pstate) :t (print-astring "\\t" pstate) :v (print-astring "\\v" pstate) :percent (print-astring "\\%" pstate))))
Theorem:
(defthm pristatep-of-print-simple-escape (b* ((new-pstate (print-simple-escape esc pstate))) (pristatep new-pstate)) :rule-classes :rewrite)
Theorem:
(defthm print-simple-escape-of-simple-escape-fix-esc (equal (print-simple-escape (simple-escape-fix esc) pstate) (print-simple-escape esc pstate)))
Theorem:
(defthm print-simple-escape-simple-escape-equiv-congruence-on-esc (implies (simple-escape-equiv esc esc-equiv) (equal (print-simple-escape esc pstate) (print-simple-escape esc-equiv pstate))) :rule-classes :congruence)
Theorem:
(defthm print-simple-escape-of-pristate-fix-pstate (equal (print-simple-escape esc (pristate-fix pstate)) (print-simple-escape esc pstate)))
Theorem:
(defthm print-simple-escape-pristate-equiv-congruence-on-pstate (implies (pristate-equiv pstate pstate-equiv) (equal (print-simple-escape esc pstate) (print-simple-escape esc pstate-equiv))) :rule-classes :congruence)