Basic equivalence relation for priopt structures.
Function:
(defun priopt-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (prioptp acl2::x) (prioptp acl2::y)))) (equal (priopt-fix acl2::x) (priopt-fix acl2::y)))
Theorem:
(defthm priopt-equiv-is-an-equivalence (and (booleanp (priopt-equiv x y)) (priopt-equiv x x) (implies (priopt-equiv x y) (priopt-equiv y x)) (implies (and (priopt-equiv x y) (priopt-equiv y z)) (priopt-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm priopt-equiv-implies-equal-priopt-fix-1 (implies (priopt-equiv acl2::x x-equiv) (equal (priopt-fix acl2::x) (priopt-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm priopt-fix-under-priopt-equiv (priopt-equiv (priopt-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-priopt-fix-1-forward-to-priopt-equiv (implies (equal (priopt-fix acl2::x) acl2::y) (priopt-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-priopt-fix-2-forward-to-priopt-equiv (implies (equal acl2::x (priopt-fix acl2::y)) (priopt-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm priopt-equiv-of-priopt-fix-1-forward (implies (priopt-equiv (priopt-fix acl2::x) acl2::y) (priopt-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm priopt-equiv-of-priopt-fix-2-forward (implies (priopt-equiv acl2::x (priopt-fix acl2::y)) (priopt-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)