Basic equivalence relation for statassert structures.
Function:
(defun statassert-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (statassertp acl2::x) (statassertp acl2::y)))) (equal (statassert-fix acl2::x) (statassert-fix acl2::y)))
Theorem:
(defthm statassert-equiv-is-an-equivalence (and (booleanp (statassert-equiv x y)) (statassert-equiv x x) (implies (statassert-equiv x y) (statassert-equiv y x)) (implies (and (statassert-equiv x y) (statassert-equiv y z)) (statassert-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm statassert-equiv-implies-equal-statassert-fix-1 (implies (statassert-equiv acl2::x x-equiv) (equal (statassert-fix acl2::x) (statassert-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm statassert-fix-under-statassert-equiv (statassert-equiv (statassert-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-statassert-fix-1-forward-to-statassert-equiv (implies (equal (statassert-fix acl2::x) acl2::y) (statassert-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-statassert-fix-2-forward-to-statassert-equiv (implies (equal acl2::x (statassert-fix acl2::y)) (statassert-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm statassert-equiv-of-statassert-fix-1-forward (implies (statassert-equiv (statassert-fix acl2::x) acl2::y) (statassert-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm statassert-equiv-of-statassert-fix-2-forward (implies (statassert-equiv acl2::x (statassert-fix acl2::y)) (statassert-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)