Basic equivalence relation for unop structures.
Function:
(defun unop-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (unopp acl2::x) (unopp acl2::y)))) (equal (unop-fix acl2::x) (unop-fix acl2::y)))
Theorem:
(defthm unop-equiv-is-an-equivalence (and (booleanp (unop-equiv x y)) (unop-equiv x x) (implies (unop-equiv x y) (unop-equiv y x)) (implies (and (unop-equiv x y) (unop-equiv y z)) (unop-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm unop-equiv-implies-equal-unop-fix-1 (implies (unop-equiv acl2::x x-equiv) (equal (unop-fix acl2::x) (unop-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm unop-fix-under-unop-equiv (unop-equiv (unop-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-unop-fix-1-forward-to-unop-equiv (implies (equal (unop-fix acl2::x) acl2::y) (unop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-unop-fix-2-forward-to-unop-equiv (implies (equal acl2::x (unop-fix acl2::y)) (unop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm unop-equiv-of-unop-fix-1-forward (implies (unop-equiv (unop-fix acl2::x) acl2::y) (unop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm unop-equiv-of-unop-fix-2-forward (implies (unop-equiv acl2::x (unop-fix acl2::y)) (unop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)