(valid-ord-scope-fix x) is an ACL2::fty alist fixing function that follows the fix-keys strategy.
(valid-ord-scope-fix x) → fty::newx
Note that in the execution this is just an inline identity function.
Function:
(defun valid-ord-scope-fix$inline (x) (declare (xargs :guard (valid-ord-scopep x))) (let ((__function__ 'valid-ord-scope-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) nil (if (consp (car x)) (cons (cons (ident-fix (caar x)) (valid-ord-info-fix (cdar x))) (valid-ord-scope-fix (cdr x))) (valid-ord-scope-fix (cdr x)))) :exec x)))
Theorem:
(defthm valid-ord-scopep-of-valid-ord-scope-fix (b* ((fty::newx (valid-ord-scope-fix$inline x))) (valid-ord-scopep fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm valid-ord-scope-fix-when-valid-ord-scopep (implies (valid-ord-scopep x) (equal (valid-ord-scope-fix x) x)))
Function:
(defun valid-ord-scope-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (valid-ord-scopep acl2::x) (valid-ord-scopep acl2::y)))) (equal (valid-ord-scope-fix acl2::x) (valid-ord-scope-fix acl2::y)))
Theorem:
(defthm valid-ord-scope-equiv-is-an-equivalence (and (booleanp (valid-ord-scope-equiv x y)) (valid-ord-scope-equiv x x) (implies (valid-ord-scope-equiv x y) (valid-ord-scope-equiv y x)) (implies (and (valid-ord-scope-equiv x y) (valid-ord-scope-equiv y z)) (valid-ord-scope-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm valid-ord-scope-equiv-implies-equal-valid-ord-scope-fix-1 (implies (valid-ord-scope-equiv acl2::x x-equiv) (equal (valid-ord-scope-fix acl2::x) (valid-ord-scope-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm valid-ord-scope-fix-under-valid-ord-scope-equiv (valid-ord-scope-equiv (valid-ord-scope-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-valid-ord-scope-fix-1-forward-to-valid-ord-scope-equiv (implies (equal (valid-ord-scope-fix acl2::x) acl2::y) (valid-ord-scope-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-valid-ord-scope-fix-2-forward-to-valid-ord-scope-equiv (implies (equal acl2::x (valid-ord-scope-fix acl2::y)) (valid-ord-scope-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm valid-ord-scope-equiv-of-valid-ord-scope-fix-1-forward (implies (valid-ord-scope-equiv (valid-ord-scope-fix acl2::x) acl2::y) (valid-ord-scope-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm valid-ord-scope-equiv-of-valid-ord-scope-fix-2-forward (implies (valid-ord-scope-equiv acl2::x (valid-ord-scope-fix acl2::y)) (valid-ord-scope-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-ident-fix-k-under-valid-ord-scope-equiv (valid-ord-scope-equiv (cons (cons (ident-fix acl2::k) acl2::v) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-ident-equiv-congruence-on-k-under-valid-ord-scope-equiv (implies (ident-equiv acl2::k k-equiv) (valid-ord-scope-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons k-equiv acl2::v) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-valid-ord-info-fix-v-under-valid-ord-scope-equiv (valid-ord-scope-equiv (cons (cons acl2::k (valid-ord-info-fix acl2::v)) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-valid-ord-info-equiv-congruence-on-v-under-valid-ord-scope-equiv (implies (valid-ord-info-equiv acl2::v v-equiv) (valid-ord-scope-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons acl2::k v-equiv) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-valid-ord-scope-fix-y-under-valid-ord-scope-equiv (valid-ord-scope-equiv (cons acl2::x (valid-ord-scope-fix acl2::y)) (cons acl2::x acl2::y)))
Theorem:
(defthm cons-valid-ord-scope-equiv-congruence-on-y-under-valid-ord-scope-equiv (implies (valid-ord-scope-equiv acl2::y y-equiv) (valid-ord-scope-equiv (cons acl2::x acl2::y) (cons acl2::x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm valid-ord-scope-fix-of-acons (equal (valid-ord-scope-fix (cons (cons acl2::a acl2::b) x)) (cons (cons (ident-fix acl2::a) (valid-ord-info-fix acl2::b)) (valid-ord-scope-fix x))))
Theorem:
(defthm valid-ord-scope-fix-of-append (equal (valid-ord-scope-fix (append std::a std::b)) (append (valid-ord-scope-fix std::a) (valid-ord-scope-fix std::b))))
Theorem:
(defthm consp-car-of-valid-ord-scope-fix (equal (consp (car (valid-ord-scope-fix x))) (consp (valid-ord-scope-fix x))))