Bitwise inclusive disjunction of a value of type
Function:
(defun bitior-sint-ushort (x y) (declare (xargs :guard (and (sintp x) (ushortp y)))) (bitior-sint-sint x (sint-from-ushort y)))
Theorem:
(defthm sintp-of-bitior-sint-ushort (sintp (bitior-sint-ushort x y)))
Theorem:
(defthm bitior-sint-ushort-of-sint-fix-x (equal (bitior-sint-ushort (sint-fix x) y) (bitior-sint-ushort x y)))
Theorem:
(defthm bitior-sint-ushort-sint-equiv-congruence-on-x (implies (sint-equiv x x-equiv) (equal (bitior-sint-ushort x y) (bitior-sint-ushort x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitior-sint-ushort-of-ushort-fix-y (equal (bitior-sint-ushort x (ushort-fix y)) (bitior-sint-ushort x y)))
Theorem:
(defthm bitior-sint-ushort-ushort-equiv-congruence-on-y (implies (ushort-equiv y y-equiv) (equal (bitior-sint-ushort x y) (bitior-sint-ushort x y-equiv))) :rule-classes :congruence)