Bitwise inclusive disjunction of a value of type
Function:
(defun bitior-ulong-ushort (x y) (declare (xargs :guard (and (ulongp x) (ushortp y)))) (bitior-ulong-ulong x (ulong-from-ushort y)))
Theorem:
(defthm ulongp-of-bitior-ulong-ushort (ulongp (bitior-ulong-ushort x y)))
Theorem:
(defthm bitior-ulong-ushort-of-ulong-fix-x (equal (bitior-ulong-ushort (ulong-fix x) y) (bitior-ulong-ushort x y)))
Theorem:
(defthm bitior-ulong-ushort-ulong-equiv-congruence-on-x (implies (ulong-equiv x x-equiv) (equal (bitior-ulong-ushort x y) (bitior-ulong-ushort x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitior-ulong-ushort-of-ushort-fix-y (equal (bitior-ulong-ushort x (ushort-fix y)) (bitior-ulong-ushort x y)))
Theorem:
(defthm bitior-ulong-ushort-ushort-equiv-congruence-on-y (implies (ushort-equiv y y-equiv) (equal (bitior-ulong-ushort x y) (bitior-ulong-ushort x y-equiv))) :rule-classes :congruence)