Bitwise inclusive disjunction of a value of type
Function:
(defun bitior-ushort-slong (x y) (declare (xargs :guard (and (ushortp x) (slongp y)))) (bitior-slong-slong (slong-from-ushort x) y))
Theorem:
(defthm slongp-of-bitior-ushort-slong (slongp (bitior-ushort-slong x y)))
Theorem:
(defthm bitior-ushort-slong-of-ushort-fix-x (equal (bitior-ushort-slong (ushort-fix x) y) (bitior-ushort-slong x y)))
Theorem:
(defthm bitior-ushort-slong-ushort-equiv-congruence-on-x (implies (ushort-equiv x x-equiv) (equal (bitior-ushort-slong x y) (bitior-ushort-slong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitior-ushort-slong-of-slong-fix-y (equal (bitior-ushort-slong x (slong-fix y)) (bitior-ushort-slong x y)))
Theorem:
(defthm bitior-ushort-slong-slong-equiv-congruence-on-y (implies (slong-equiv y y-equiv) (equal (bitior-ushort-slong x y) (bitior-ushort-slong x y-equiv))) :rule-classes :congruence)