(compustate-scopes-numbers-aux frames) → ns
Function:
(defun compustate-scopes-numbers-aux (frames) (declare (xargs :guard (frame-listp frames))) (let ((__function__ 'compustate-scopes-numbers-aux)) (declare (ignorable __function__)) (cond ((endp frames) nil) (t (cons (len (frame->scopes (car frames))) (compustate-scopes-numbers-aux (cdr frames)))))))
Theorem:
(defthm pos-listp-of-compustate-scopes-numbers-aux (b* ((ns (compustate-scopes-numbers-aux frames))) (pos-listp ns)) :rule-classes :rewrite)
Theorem:
(defthm len-of-compustate-scopes-numbers-aux (b* ((?ns (compustate-scopes-numbers-aux frames))) (equal (len ns) (len frames))))
Theorem:
(defthm consp-of-compustate-scopes-numbers-aux (b* ((?ns (compustate-scopes-numbers-aux frames))) (equal (consp ns) (consp frames))))
Theorem:
(defthm car-of-compustate-scopes-numbers-aux (b* ((?ns (compustate-scopes-numbers-aux frames))) (implies (> (len frames) 0) (equal (car ns) (len (frame->scopes (car frames)))))))
Theorem:
(defthm compustate-scopes-numbers-aux-of-append (equal (compustate-scopes-numbers-aux (append frames1 frames2)) (append (compustate-scopes-numbers-aux frames1) (compustate-scopes-numbers-aux frames2))))
Theorem:
(defthm compustate-scopes-numbers-aux-of-rev (equal (compustate-scopes-numbers-aux (rev frames)) (rev (compustate-scopes-numbers-aux frames))))
Theorem:
(defthm compustate-scopes-numbers-aux-of-update-nth (implies (< (nfix i) (len frames)) (equal (compustate-scopes-numbers-aux (update-nth i frame frames)) (update-nth i (len (frame->scopes frame)) (compustate-scopes-numbers-aux frames)))))
Theorem:
(defthm update-nth-of-nth-and-compustate-scopes-numbers-aux (implies (< (nfix i) (len (compustate->frames compst))) (equal (update-nth i (len (frame->scopes (nth i (compustate->frames compst)))) (compustate-scopes-numbers-aux (compustate->frames compst))) (compustate-scopes-numbers-aux (compustate->frames compst)))))
Theorem:
(defthm compustate-scopes-numbers-aux-of-frame-list-fix-frames (equal (compustate-scopes-numbers-aux (frame-list-fix frames)) (compustate-scopes-numbers-aux frames)))
Theorem:
(defthm compustate-scopes-numbers-aux-frame-list-equiv-congruence-on-frames (implies (frame-list-equiv frames frames-equiv) (equal (compustate-scopes-numbers-aux frames) (compustate-scopes-numbers-aux frames-equiv))) :rule-classes :congruence)