Division of a value of type
Function:
(defun div-schar-uchar (x y) (declare (xargs :guard (and (scharp x) (ucharp y) (div-schar-uchar-okp x y)))) (div-sint-sint (sint-from-schar x) (sint-from-uchar y)))
Theorem:
(defthm sintp-of-div-schar-uchar (sintp (div-schar-uchar x y)))
Theorem:
(defthm div-schar-uchar-of-schar-fix-x (equal (div-schar-uchar (schar-fix x) y) (div-schar-uchar x y)))
Theorem:
(defthm div-schar-uchar-schar-equiv-congruence-on-x (implies (schar-equiv x x-equiv) (equal (div-schar-uchar x y) (div-schar-uchar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm div-schar-uchar-of-uchar-fix-y (equal (div-schar-uchar x (uchar-fix y)) (div-schar-uchar x y)))
Theorem:
(defthm div-schar-uchar-uchar-equiv-congruence-on-y (implies (uchar-equiv y y-equiv) (equal (div-schar-uchar x y) (div-schar-uchar x y-equiv))) :rule-classes :congruence)