Check if the division of a value of type
Function:
(defun div-uchar-sllong-okp (x y) (declare (xargs :guard (and (ucharp x) (sllongp y)))) (div-sllong-sllong-okp (sllong-from-uchar x) y))
Theorem:
(defthm booleanp-of-div-uchar-sllong-okp (booleanp (div-uchar-sllong-okp x y)))
Theorem:
(defthm div-uchar-sllong-okp-of-uchar-fix-x (equal (div-uchar-sllong-okp (uchar-fix x) y) (div-uchar-sllong-okp x y)))
Theorem:
(defthm div-uchar-sllong-okp-uchar-equiv-congruence-on-x (implies (uchar-equiv x x-equiv) (equal (div-uchar-sllong-okp x y) (div-uchar-sllong-okp x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm div-uchar-sllong-okp-of-sllong-fix-y (equal (div-uchar-sllong-okp x (sllong-fix y)) (div-uchar-sllong-okp x y)))
Theorem:
(defthm div-uchar-sllong-okp-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (div-uchar-sllong-okp x y) (div-uchar-sllong-okp x y-equiv))) :rule-classes :congruence)