Equality of a value of type
Function:
(defun eq-uchar-uchar (x y) (declare (xargs :guard (and (ucharp x) (ucharp y)))) (eq-sint-sint (sint-from-uchar x) (sint-from-uchar y)))
Theorem:
(defthm sintp-of-eq-uchar-uchar (sintp (eq-uchar-uchar x y)))
Theorem:
(defthm eq-uchar-uchar-of-uchar-fix-x (equal (eq-uchar-uchar (uchar-fix x) y) (eq-uchar-uchar x y)))
Theorem:
(defthm eq-uchar-uchar-uchar-equiv-congruence-on-x (implies (uchar-equiv x x-equiv) (equal (eq-uchar-uchar x y) (eq-uchar-uchar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm eq-uchar-uchar-of-uchar-fix-y (equal (eq-uchar-uchar x (uchar-fix y)) (eq-uchar-uchar x y)))
Theorem:
(defthm eq-uchar-uchar-uchar-equiv-congruence-on-y (implies (uchar-equiv y y-equiv) (equal (eq-uchar-uchar x y) (eq-uchar-uchar x y-equiv))) :rule-classes :congruence)