Greater-than-or-equal-to relation of a value of type
Function:
(defun ge-ullong-ulong (x y) (declare (xargs :guard (and (ullongp x) (ulongp y)))) (ge-ullong-ullong x (ullong-from-ulong y)))
Theorem:
(defthm sintp-of-ge-ullong-ulong (sintp (ge-ullong-ulong x y)))
Theorem:
(defthm ge-ullong-ulong-of-ullong-fix-x (equal (ge-ullong-ulong (ullong-fix x) y) (ge-ullong-ulong x y)))
Theorem:
(defthm ge-ullong-ulong-ullong-equiv-congruence-on-x (implies (ullong-equiv x x-equiv) (equal (ge-ullong-ulong x y) (ge-ullong-ulong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm ge-ullong-ulong-of-ulong-fix-y (equal (ge-ullong-ulong x (ulong-fix y)) (ge-ullong-ulong x y)))
Theorem:
(defthm ge-ullong-ulong-ulong-equiv-congruence-on-y (implies (ulong-equiv y y-equiv) (equal (ge-ullong-ulong x y) (ge-ullong-ulong x y-equiv))) :rule-classes :congruence)