Greater-than relation of a value of type
Function:
(defun gt-slong-uchar (x y) (declare (xargs :guard (and (slongp x) (ucharp y)))) (gt-slong-slong x (slong-from-uchar y)))
Theorem:
(defthm sintp-of-gt-slong-uchar (sintp (gt-slong-uchar x y)))
Theorem:
(defthm gt-slong-uchar-of-slong-fix-x (equal (gt-slong-uchar (slong-fix x) y) (gt-slong-uchar x y)))
Theorem:
(defthm gt-slong-uchar-slong-equiv-congruence-on-x (implies (slong-equiv x x-equiv) (equal (gt-slong-uchar x y) (gt-slong-uchar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm gt-slong-uchar-of-uchar-fix-y (equal (gt-slong-uchar x (uchar-fix y)) (gt-slong-uchar x y)))
Theorem:
(defthm gt-slong-uchar-uchar-equiv-congruence-on-y (implies (uchar-equiv y y-equiv) (equal (gt-slong-uchar x y) (gt-slong-uchar x y-equiv))) :rule-classes :congruence)