Greater-than relation of a value of type
Function:
(defun gt-ushort-ullong (x y) (declare (xargs :guard (and (ushortp x) (ullongp y)))) (gt-ullong-ullong (ullong-from-ushort x) y))
Theorem:
(defthm sintp-of-gt-ushort-ullong (sintp (gt-ushort-ullong x y)))
Theorem:
(defthm gt-ushort-ullong-of-ushort-fix-x (equal (gt-ushort-ullong (ushort-fix x) y) (gt-ushort-ullong x y)))
Theorem:
(defthm gt-ushort-ullong-ushort-equiv-congruence-on-x (implies (ushort-equiv x x-equiv) (equal (gt-ushort-ullong x y) (gt-ushort-ullong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm gt-ushort-ullong-of-ullong-fix-y (equal (gt-ushort-ullong x (ullong-fix y)) (gt-ushort-ullong x y)))
Theorem:
(defthm gt-ushort-ullong-ullong-equiv-congruence-on-y (implies (ullong-equiv y y-equiv) (equal (gt-ushort-ullong x y) (gt-ushort-ullong x y-equiv))) :rule-classes :congruence)